Опыт бриджмена просачивание масла через сталь. Высокая награда за высокое давление. Формирование основных понятий статистической физики

Суть данного метода заключается в том, что зарождающиеся в нижней части тигля с расплавом монокристаллы служат затравкой. Тигель опускается в более холодную зону печи. Нижняя часть тигля – коническая. Скорость выращивания – также несколько мм/час.

Схема установки для выращивания монокристаллов по методу Стокаберга-Бриджмена: 1 - тигель с расплавом, 2 - кристалл, 3 - печь, 4 - холодильник, 5 - термопара, 6 - тепловой экран.

Метод Вернейля

Метод Вернейля реализуется путем просыпки маленьких порций порошковой шихты в трубчатую печь, где эта шихта расплавляется во время падения в кислородно - водородном пламени и питает каплю расплава на поверхности затравки. Затравка при этом вытягивается постепенно вниз, а капля пребывает на одном и том же уровне по высоте печи.

Преимущества :

    отсутствие флюсов и дорогостоящих материалов тиглей;

    отсутствие необходимости точного контроля температуры;

    возможность контроля за ростом монокристалла.

Недостатки :

    из-за высокой температуры роста кристаллы имеют внутренние напряжения;

    стехиометрия состава может нарушаться вследствие восстановления компонентов водородом и испарения летучих веществ.

Скорость выращивания – несколько мм/час.


На рисунках показан принцип выращивания монокристаллов по методу Вернейля и установочное оборудование.

Метод зонной плавки

Зонная плавка заключается в прогонке зоны расплава по длине заготовки монокристалла, одновременно в зоне расплава концентрируются примеси и происходит очистка кристалла, конечную часть которого затем удаляют. Нагрев осуществляется индукционным, радиационно-оптическим или другим методом.


Схема устройства для зонной плавки: 1 - затравка, 2 - расплав, 3 – поликристаллический слиток, 4 – нагреватель (стрелкой показано направление движения нагревателя).

Система для индукционной зонной плавки германия Гидротермальное выращивание

Гидротермальный метод выращивания кристаллов используется для выращивания кристаллов, которые трудно или невозможно вырастить другими методами, так как наиболее близко имитирует процессы образования минералов в природе. В основе его лежит тот факт, что при высоких температурах (до 700 °С) и давлениях (до 3000 атм.) водные растворы солей способны активно растворять соединения, практически нерастворимые при нормальных условиях. Для гидротермального выращивания кристаллов используют специальные прочные стальные сосуды – автоклавы, способные выдержать такие экстремальные давления и температуры.

Наиболее распространенной является модификация гидротермального метода, называемая методом перекристаллизации в условиях положительного температурного градиента. Суть его заключается в следующем:

На дне автоклава, нагреваемого снизу и охлаждаемого сверху, размещается растворяемое вещество – шихта. Над ней расположены затравки (пластины, выпиленные по определенному направлению из кристалла выращиваемого вещества). В автоклаве создается разность температур (нижняя зона более горячая), чему способствует диафрагма – перегородка с отверстиями, разделяющая верхнюю и нижнюю зоны. Раствор циркулирует между гранулами шихты, насыщаясь веществом выращиваемого кристалла. Одновременно происходит нагревание гидротермального раствора. Горячий (и потому – более легкий) раствор поступает в верхнюю часть автоклава, где остывает.

Растворимость кристаллизуемого вещества с понижением температуры снижается, избыток растворенного вещества отлагается на затравки. Холодный высокоплотный обедненный раствор опускается в нижнюю часть автоклава и цикл повторяется. Процесс ведется до полного переноса вещества шихты на затравки. В результате этих процессов и растет кристалл. Скорость выращивания составляет от долей мм до нескольких мм в сутки. Выращиваемые монокристаллы обычно имеют высокое качество и характерную кристаллографическую огранку, т.к. растут в условиях более или менее близких к равновесным.

Схема автоклава для гидротермального синтеза: 1 - раствор, 2 - криcталл, 3 - печь, 4 - вещество для кристаллизации (T 1 2 ).

Перси Уильямс Бриджмен

Лауреат Нобелевской премии по физике 1946 года. Формулировка Нобелевского комитета: «За изобретение прибора, позволяющего создавать сверхвысокие давления, и за открытия, сделанные в связи с этим в физике высоких давлений».

Наш сегодняшний герой - типичный американец. Он родился в Кембридже, но не в том, который дал нам целую плеяду физиков из , а в том, который река Чарльз отделяет от Бостона. Город и поныне невелик - всего 100 тысяч человек, зато каких! Именно в этом городе расположены и Гарвардский университет, и Массачусетский технологический институт.

Одно из зданий Гарвардского университета в Кембридже (Массачусетс, США)

Filippo Diotalevi/Flickr

Родителями Питера (так близкие с детства называли Перси) были отнюдь не профессора. Отец его, Реймонд Лендон Бриджмен, был репортером, специализировался на социальной и политической тематике. Мать, Мэри Энн Марию, урожденную Уильямс, описывали как «простую, живую и немного вызывающую» женщину.

Если верить в знаки, то с самого рождения жизнь «указывала» Питеру-Перси на то, что заниматься нужно физикой. Родился в Кембридже, потом семья переехала в город с говорящим именем Ньютон. Неудивительно, что учитель приходской школы в Ньютоне посоветовал мальчику пойти дальше по научной стезе. Естественно, что Перси решил учиться именно в Гарварде. С ним и была связана большая часть его жизни.

Бакалавром Бриджмен стал в 1904 году. Уже тогда он начал заниматься высоким давлением. Будущего лауреата интересовала наука и свои размышления о ней… И больше ничего. Он никогда не преподавал, грубо посылал ректора Гарварда Эбботта Лоуэлла (его фраза «Меня не интересует ваш… колледж, дайте мне заниматься наукой» стала крылатой), и в итоге Бриджмен написал более четверти тысячи статей и чертову дюжину монографий.

Свое первое изобретение, связанное с давлением, он сделал еще в 1905 году. Ученый изобрел герметизированный метод изоляции сосудов высокого давления с газом. Решение было оригинальным: изолирующая прокладка, сделанная из резины или мягкого металла, сжималась под давлением бо́льшим, чем давление внутри сосуда (она получила название прокладка Бриджмена). В итоге запечатывающая пробка автоматически уплотнялась по мере возрастания давления и никогда не давала течи независимо от величины давления, пока выдерживают стенки сосуда. Любопытно, что это изобретение было сделано тогда, когда Бриджмену было нужно починить сломавшийся аппарат для работы под высоким давлением.

Прокладка Бриджмена

Wikimedia Commons

В итоге в руках Бриджмена оказался инструмент, которым можно было изучать сотни веществ в условиях высокого давления. Он дошел до показателя 100 тысяч атмосфер, а в некоторых случаях и до 400 тысяч. Фактически впервые экспериментально можно было изучать вещества в тех же условиях, в которых они находятся в недрах Земли.

А раз появился новый инструмент, выведший науку в совершенно неведомую область, открытия посыпались как из рога изобилия. Хотим открыть новую аллотропную модификацию фосфора? Извольте! Попробуем получить «горячий лед»? Всего 20 тысяч атмосфер, и лед не тает при 80 °C!

Он открыл сжимаемость атомов (начав со сжатия металлического цезия), то, как молекулы жидкостей, в том числе воды, ведут себя при сжатии, изучал графики зависимости точки плавления при высочайших давлениях. Странно даже, что Нобелевская премия пришла так поздно. К тому времени Бриджмен уже успел посжимать даже уран и плутоний в рамках Манхэттенского проекта… Кстати, любопытно, что в 1946 году наш герой «обошел» в нобелевской гонке еще одного великого экспериментатора, прославившегося в другом Кембридже, - Петра Леонидовича Капицу. (О нем мы расскажем не скоро, ибо своей премии за открытие сверхтекучести гелия, состоявшееся в 1938 году, Капица ждал ровно сорок лет…)

Петр Капица в 1930-х годах

Wikimedia Commons

«С помощью вашего оригинального прибора в соединении с блестящей экспериментаторской техникой вы весьма существенно обогатили наши знания о свойствах материи при высоких давлениях», - так приветствовали Перси Бриджмена во время церемонии вручения Нобелевской премии в Стокгольме 4 декабря 1946 года.

Уже став знаменитым физиком, Бриджмен заявил о себе как о философе. И весьма успешно. Из всех нобелевских лауреатов, о которых мы писали до сих пор, почти настоящим философом был, пожалуй, только (многие помнят его выходивший в СССР сборник «Физика и философия»). Главной книгой Бриджмена стала «Логика современной физики», вышедшая в 1927 году. В этой книге он заложил основы целого нового философского течения, названного операционизмом (само это слово появилось в 1920 году в книге другого физика, Нормана Кэмпбелла).

В самом конце своей жизни Бриджмен снова заявил о себе - трагически и громко. Когда ему исполнилось 79, нобелевский лауреат узнал, что неизлечимо болен. Рак с метастазами, быстрая потеря сил, начинающиеся боли. Ученый твердо решил успеть уйти из жизни безболезненно и не ждать последней стадии, однако ни один врач не захотел помочь ему с эвтаназией. 20 августа 1961 года Бриджмен выстрелил себе в голову из охотничьего ружья, оставив горькую и злую записку: «Со стороны общества не очень порядочно заставлять человека делать это своими руками. Вероятно, сегодня последний день, когда я еще способен сделать это сам». «Записка Бриджмена» до сих пор фигурирует в этических дебатах, посвященных эвтаназии.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Перси Уильямс Бриджемен

Фото с сайта nobelprize.org/

БРИДЖМЕН Перси Уильяме (1882- 1961) - американский физик и философ; профессор математики и естественной философии Гарвардского университета (Кембридж); лауреат Нобелевской премии за работы по физике высоких давлений (1946). В философии Бриджмен - основатель и глава субъективно-идеалистического течения, наз. операционализмом. Философские взгляды Бриджмена изложены в книгах «Логика современной физики» (1927), «Природа физической теории» (1936).

Философский словарь. Под ред. И.Т. Фролова . М., 1991, с. 52.

Бриджмен (Bridgman) Перси Уильяме (21.4. 1882, Кембридж, Массачусетс,- 20. 8. 1961, Рандолф, Нью-Хэмпшир), американский физик и философ. Нобелевская премия по физике (1946). В трактовке познания Бриджмен близок к инструментализму (в истолковании проблемы значения понятий) и к солипсизму (в истолковании опыта). Абсолютизируя эмпирический аспект науки, Бриджмен недооценивал фактическую роль абстрактного мышления и абстракций. Он считал бессмысленными теоретические понятия, неверифицируемые в опыте. Идею связи значения понятия с совокупностью действий (операций), ведущих к их применению, Бриджмен перенёс в методологию науки и теорию познания в качестве общего принципа: определять научные понятия, по Бриджмену, надо не в терминах других абстракций, а в терминах операций опыта (операциональное определение понятий). Этот тезис послужил основой в целом идеалистические программы операционного построения языка науки. См. Операционализм.

Философский энциклопедический словарь. - М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв , П. Н. Федосеев , С. М. Ковалёв, В. Г. Панов. 1983.

Сочинения: Logic of modern physics, N. Υ., 1927; The nature of some of our physical concepts, N. Y., 1952; Reflections of a physicist, Ν. Υ., 19551; Way things are, Camb., 1959.

Бриджмен (Bridgman) Перси Уильяме (21 апреля 1882 Кембридж, США - 20 августа 1961, Рандолф, Нью-Хэмпшир) - американский физик и философ науки, теоретик операционализма; лауреат Нобелевской премии по физике (1946). Окончил Гарвардский университет (1904), с 1908 преподаватель в нем, с 1919 - профессор. В 1926-35 - профессор математики и философии природы в университете Хиттинса, в 1950-1954 годы - вновь в Гарвардском университете. Член американской Академии искусств и наук, Американского философского общества, а также др. научных обществ.

Бриджмен был экспериментатором в области физики и техники высоких давлений. Широкую известность приобрела его книга «Анализ размерностей» (Dimensional Analysis. New Haven, 1922; рус. пер.: М., 1934). Занимался осмыслением логической структуры, языка и природы физической науки, а также философскими вопросами. Как и неопозитивисты, Бриджмен сосредоточил свое внимание на анализе понятийной структуры физики и поиске эмпирических оснований для теоретических конструктов. В духе инструментализма Бриджмен отождествлял значение понятия с набором операций, при этом определял операционалистский метод как совокупность поэтапных действий - практических и мыслительных экспериментов - по определению значений. Он предполагал, что язык науки должен содержать высказывания, все понятия которого имеют референты. В книге «Способ существования вещей» (The Way Things Are. N.Y., 1959), посвященной общегносеологическим вопросам, Бриджмен определяет философские теории как вербальные эксперименты, свидетельствующие о возможностях мышления и фантазии человека, а также о социальной потребности в таких экспериментах, а не о природе мира.

На операционализм Бриджмена опирался Дж. Дьюи в обосновании своей версии инструментализма. Высокую оценку его теория получила у представителей Венского кружка (Г. Фейгл), а также оказала влияние на исследования в области социологии и психологии (прежде всего бихевиоризм Б. Ф. Скиннера). Развиваемые в книге «Интеллектуальный индивид и общество» (The Intelligent Individual and Society. N.Y., 1938) идеи интеллектуальной свободы и ответственности вызвали широкий резонанс среди американской интеллигенции.

Сочинения: The Logic of Modem Physics. N.Y., 1927; The Physics of High Pressure. N.Y., 1937; The Nature of Thermodynamics. Cambr. Mass., 1941; The Nature of Some our Physical Concepts. N.Y., 1952; Reflections of a Physicis. N.Y., 1950; A Sophisticate"s Primer of Relativity. L., 1962.

Литература: Печенкин А. А. Операционалистская трактовка логики науки у Перси Бриджмена. - В кн.: Концепции науки в буржуазной философии и социологии. Вторая половина XIX-XX в. М., 1974.

Н. С. Юлина

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин , А.А. Гусейнов , Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 310-311.

Бриджемен (Bridgman), Перси Уильямс (21.04.1882 г. Кембридж, шт. Массачусетс – 20.08.1961 г. Рандолф, Нью-Хэмпшир), – американский физик и философ, профессор математики и философии в Гарвардском университете), лауреат Нобелевской премией 1946 года по физике: за усовершенствование методов получения высоких давлений, исследования свойств различных элементов и их соединений под давлением в десятки и сотни тысяч атмосфер, открытие новых модификаций, существующих только при очень высоких давлениях.

Перси Уильямс Бриджмен родился в Кембридже (штат Массачусетс). Он был единственным ребенком Раймонда Ландона Бриджмена, газетного репортера, публициста, и Мэри Энн Марии Бриджмен, в девичестве Уильямс. Вскоре после его рождения семья переехала в г. Ньютон, где Бриджмен рос, посещая приходскую церковь, играя в шахматы и занимаясь спортом. Учитель средней школы в Ньютоне посоветовал ему выбрать своей стезей науку.

В 1900 году Бриджмен поступил в Гарвардский университет, положив начало своему длительному сотрудничеству с этим учебным заведением (1900 – 1954 гг.). Он выбрал для изучения химию, математику и физику, получив с отличием диплом бакалавра в 1904 г.

В 1905 г. Бриджмен изобрел герметизированный метод изоляции сосудов с газом, находящимся под высоким давлением. Принцип конструкции Бриджмена состоял в том, что изолирующая прокладка, сделанная из резины или мягкого металла, была сжата под давлением большим, чем давление внутри сосуда. Запечатывающая пробка автоматически уплотняется по мере возрастания давления и никогда не дает течи независимо от величины давления, пока выдерживают стенки сосуда. За эту работу ему в том же году была присвоена степень магистра.

Создание высокопрочных закаленных легированных стальных сплавов, содержащих карбид вольфрама с кобальтовой добавкой (карболой), позволило Бриджмену использовать свои постоянно совершенствуемые аппараты для измерения сжимаемости, плотности и точки плавления сотен материалов в зависимости от давления и температуры. В своих работах он установил, что многие материалы под действием высокого давления становятся полиморфными, их кристаллическая структура меняется, допуская более плотную упаковку атомов в кристалле.

В 1908 году он стал доктором наук, защитив диссертацию о влиянии давления на электрическое сопротивление ртути, став, таким образом, научным сотрудником университета.

Его исследования порожденного давлением полиморфизма вскрыли две новые формы фосфора и «горячий лед» – лед, который устойчив при 180° по Фаренгейту и давлении около 20 тыс. атмосфер. В последующие годы исследователи, используя высокое давление, создали синтетические алмазы, кубические кристаллы нитрида бора и высококачественные кристаллы кварца. Бриджмен обнаружил, что высокое давление может повлиять даже на электронную структуру атомов, как это видно на примере уменьшения атомного объема элемента цезия при 45 тыс. атмосфер. Его исследования доказали, что при высоких давлениях, существующих в недрах Земли, должны происходить радикальные изменения в физических свойствах и кристаллической структуре горных пород.

В 1910 году Бриджмен становится преподавателем, в 1913 году – ассистент-профессором,

Во время первой мировой войны Бриджмен, работая в Нью-Лондоне (штат Коннектикут), создает систему звукового обнаружения для противолодочной борьбы. В 1919 году становится профессором.

Результат его научной работы огромен – 260 статей и 13 книг, что не в последнюю очередь связано с его отказом от всех общественных обязанностей: его никогда не видели на факультетских собраниях и очень редко – в университетском комитете. Заявление: «Меня не интересует ваш колледж, я хочу заниматься исследованиями», которое он сделал ректору университета, характеризует его как индивидуалиста, что выражалось также в его нежелании проводить совместные исследования или брать более самого необходимого числа аспирантов.

В 1920 году он в области методологии измерений сформулировал и дал систематическое изложение анализа размерностей (метода определения связи между физическими величинами по их размерности). Эта теория явилась результатом формировавшихся философских взглядов Бриджемена. Философская позиция, с которой решались Бриджменом указанная выше проблема, формировалась под влиянием инструментализма Дж. Дьюи , критических исследований в области оснований математики, начатых математическим интуиционизмом, и в особенности – методологических основ относительности теории А. Эйнштейна. Согласно Бриджмену, самым существенным методологическим результатом этой теории явилось указание на связь значения понятия с совокупностью действий (операций), ведущих к применению (или к формированию) понятия в каждом отдельном случае. Эта связь и выражает то, что Бриджмен назвал операциональным определением понятия, выдвинув тезис, согласно которому определение любого научного понятия должно быть только операциональным. Этот тезис послужил основой его, в целом идеалистической, программы операционного построения языка науки. Операционализм оформляется как идейное течение, претендующее на роль философско-методологической основы теоретического естествознания и обществ, наук. Начав с философской критики традиционного взгляда на формулы размерности как на выражение «субстанциальных свойств» физических величин и опираясь на установленную им зависимость размерностей от операций измерения, Бриджмен перенёс идею операционального определения понятий в методологию науки и в теорию познания в качестве общего принципа: «непогрешимое» определение понятий достигается не в терминах свойств, а в терминах операций опыта. Например, понятие длины, определяемое через абстракцию как общее свойство равных отрезков, – неоперациональное, «плохое»; оно превращает в реальность свойство, которое не верифицируется в опыте; напротив, метрическое понятие длины – операциональное, «хорошее»; опыт даёт нам только числовую оценку отрезка, которая может быть вычислена решением уравнения или определена измерением.

Продолжая работать в области сверх высоких давлений, он сконструировал оборудование с системой двойного сжатия, где мощный компрессор действует внутри сосуда с высоким давлением. Это позволило Бриджмену легко получал в небольших объемах давление около 100 тыс. атмосфер. Время от времени он изучал воздействие на вещество давлений, достигающих 400 тыс. атмосфер.

Во время второй мировой войны Опенгеймер , привлек своего учителя к работе в Манхетенском проекте, где Бриджмен работал над проблемой сжимаемости урана и плутония, внеся тем самым свой вклад в создание первой атомной бомбы.

В 1946 году Бриджмен был награжден Нобелевской премией по физике «за изобретение прибора, позволяющего создавать сверхвысокие давления, и за открытия, сделанные в связи с этим в физике высоких давлений».

В 1950 г. Бриджмен избирается университетским профессором и в 1954 году – почетным профессором в отставке.

Женился Бриджмен в 1912 году на Оливии Уэр, дочери Эдмунда Уэра, основателя Атлантского университета. У них были сын и дочь. Живя с семьей то в Кембридже, то в своем летнем доме в Рандолфе (штат Нью-Гемпшир), Питер, как его называли со студенческих лет, уделял много времени работе в саду, альпинизму, фотографии, шахматам, игре в ручной мяч, а также любил читать детективы и играть на фортепьяно.

В возрасте 79 лет, через 7 лет после своей отставки, Бриджмен узнал, что болен раком и что ему осталось жить несколько месяцев. Быстро теряя способность ходить и не найдя доктора, который облегчил бы ему уход из жизни, Б. покончил с собой 20 августа 1961 г. Он оставил записку, где говорилось: «Не очень порядочно со стороны общества заставлять человека самого делать подобные вещи. Вероятно, это последний день, когда я мог сделать это сам. П.У.Б.».

Бриджмен был членом Национальной академии наук, Американского философского общества. Американской академии наук и искусств. Американской ассоциации содействия развитию науки и Американского физического общества. Он был иностранным членом Лондонского королевского общества. Национальной академии наук Мексики и Индийской академии наук. Среди его многочисленных наград были медаль Румфорда Американской академии наук и искусств (1917 г.), медаль Эллиота Крессона Франклиновского института (1932 г.), премия Комстока Национальной академии наук (1933) и научная награда Американской исследовательской корпорации (1937 г.). Он обладал почетными степенями Бруклинского политехнического института, Гарвардского университета, Принстонского университета, Йельского университета и Стивенсовского технологического института.

(биографический указатель).

Исторические лица США (биографический справочник).

Президенты США (биографический справочник).

США в ХХ веке (хронологическая таблица).

Сочинения:

Logic of modern physics, N. Y., 1927; The intelligent individual and society, N. Y., 1938;

The nature of some of our physical concepts, N. Y., 1952;

Reflections of a physicist, 2 ed., N. Y., 1955; Way things are, Camb., 1959; в рус. пер. – Анализ размерностей, М. - Л.. 1934;

Физика высоких давлений, М. - Л., 1935;

Новейшие работы в области высоких давлений. М., 1948;

Исследования больших пластических деформаций и разрывов..., М., 1955.

The Logic of Modem Physics. N.Y., 1927;

The Physics of High Pressure. N.Y., 1937;

The Nature of Thermodynamics. Cambr. Mass., 1941;

The Nature of Some our Physical Concepts. N.Y., 1952;

Reflections of a Physicis. N.Y., 1950;

A Sophisticate"s Primer of Relativity. L., 1962.

Литература:

Печенкин А. А. Операционалистская трактовка логики науки у Перси Бриджмена. - В кн.: Концепции науки в буржуазной философии и социологии. Вторая половина XIX-XX в. М., 1974.

Тема 1. Основы молекулярно - кинетической теории

Основные положения МКТ

1.Все вещества состоят из частиц, между которыми есть промежутки.

2.Частицы в любом веществе непрерывно и хаотично движутся.

3.Частицы взаимодействуют друг с другом.

Некоторые опытные обоснования этих положений

Косвенные доказательства:

1. сжимаемость тел при деформации (особенно хорошо сжимаются газы, при этом уменьшаются расстояния между их частицами);

2. дробление вещества (пределом дробления в молекулярной физике являются молекула или атом);

3. расширение и сжатие тел при изменении температуры (изменение расстояния между молекулами);

4. испарение жидкостей (переход отдельных молекул жидкости в газообразное состояние);

5. диффузия – взаимное проникновение соприкасающихся веществ, обусловленное хаотичным движением молекул: быстрее всего самопроизвольное перемешивание веществ происходит в газах (минуты), медленнее в жидкостях (недели), очень медленно в твёрдых телах (годы), диффузия ускоряется с увеличением температуры;

6. броуновское движение – беспорядочноедвижение очень маленьких частиц твёрдого тела, находящихся во взвешенном состоянии в жидкости или газе, непрерывное, неуничтожимое, зависящее от температуры: становится интенсивнее при её увеличении. Объясняется тем, что каждая броуновская частица находится в окружении хаотично движущихся молекул, толчки которых приводят к её беспорядочному движению;

7. слипание свинцовых цилиндров, прилипание стекла к воде (происходят за счёт притяжения молекул);

8. сопротивление растяжению и сжатию, малая сжимаемость твёрдых тел и жидкостей доказывают то, что молекулы взаимодействуют.

Прямые доказательства:

1. наблюдение строения вещества в электронный микроскоп, фотографии отдельных больших молекул;

2. опыт Бриджмена (просачивание масла через стальные стенки сосуда под давлением атм.);

3. измерены параметры атомов и молекул – диаметр, масса, скорость.

Размеры атома порядка или см

Силы взаимодействия молекул – это силы притяжения и отталкивания. Причина возникновения сил - электромагнитные взаимодействия электронов и ядер соседних молекул: отталкивание

+ - отталкивание- +

притяжение

Силы межмолекулярного взаимодействия короткодействующие: они действуют на расстояниях, сравнимых с размерами молекул или атомов. Эти силы зависят от расстояния между этими частицами:

1. на расстоянии равном диаметру молекулы силы притяжения и отталкивания молекул равны, результирующая сила молекулярного взаимодействия равна нулю

= ,

2. на расстоянии чуть больше диаметра молекулы силы притяжения преобладают над силами отталкивания, в результате между молекулами действует сила притяжения

Сила притяжения;

3. на расстоянии меньше диаметра молекулы силы отталкивания преобладают над силами притяжения, в результате между молекулами действует сила отталкивания

Сила отталкивания;

4. на расстоянии много больше размеров молекул силы притяжения и отталкивания прекращают действовать

5. при сближении молекул, когда причём сила отталкивания растёт быстрее, результирующая сила взаимодействия молекул , проявляясь в виде силы отталкивания, становится бесконечно большой.

Основные понятия МКТ

1.Абсолютная масса молекулы ( )

Абсолютная масса молекулы или просто масса молекулы вещества очень мала, например, ( O) .

2.Относительная молекулярная масса ( ) отношение массы молекулы данного вещества к массы атома углерода : = ;

= ( - атомная единица массы).

Зная химическую формулу вещества, можно найти относительную молекулярную массу как сумму относительных масс атомов, из которых состоит молекула. Относительные атомные массы веществ берутся в таблице Менделеева. Например, () = 16 ·2 =32; () =1·2 + 16 =18.

3.Количество вещества ( отношение числа молекул данного вещества к постоянному числу Авогадро : ; постоянная Авогадро показывает, сколько молекул содержится в одном моле любого вещества, = .

Моль количество вещества, содержащееся в 12г углерода .

4.Молярная масса вещества ( ) масса одного моля вещества : Молярную массу можно найти, зная, что = кг/моль. Например, = кг/моль; O) = 18 кг/моль.

5.Масса вещества ( : N;

6.Число молекул или атомов( : ;

Агрегатные состояния вещества (фазы вещества)

твёрдое жидкое газообразное плазменное

Фазовый переход – переход вещества из одного агрегатного состояния в другое.

Например, при нагревании твёрдое вещество можно перевести в жидкое состояние, жидкое в газообразное, а газ в плазменное состояние. Плазма – это частично или полностью ионизированный газ, т. е. электронейтральная система, состоящая из нейтральных атомов и заряженных частиц (ионов, электронов и т. д.)

В молекулярной физике изучаются три фазы состояния вещества: газ, жидкость и твердое тело. Основные свойства газов: 1. не имеют постоянного объёма, занимают весь предоставленный, неограниченно расширяясь; 2. не имеют постоянной формы, принимают форму сосуда; 3. легко сжимаются; 4. оказывают давление на все стенки сосуда.

Основные свойства жидкостей: 1. сохраняют постоянный объём; 2. не имеют постоянной формы, принимают форму сосуда; 3. практически не сжимаемы; 4. текучи.

Основные свойства твёрдых тел: 1. имеют постоянный объём; 2. сохраняют постоянную форму; 3. имеют правильную геометрическую форму кристаллов.

Свойства веществ в различных агрегатных состояниях можно объяснить, зная особенности их внутреннего строения.

Агрегатное состояние Расстояние между частицами Взаимодействие частиц Характер движения частиц Порядок в расположении частиц
Газы Много больше размеров частиц Слабое притяжение, отталкивание только при соударениях Свободное, поступательное, хаотичное движение с большими скоростями - «бродяги» Нет порядка
Жидкости Сравнимо с размерами частиц Сильное притяжение и отталкивание Колебательно-поступательное движение, т.е. колеблются около положения равновесия и могут перескакивать – «кочевники» Порядок не строгий – «ближний» порядок
Твёрдые тела Меньше размеров частиц, «плотная упаковка» Сильное притяжение и отталкивание (сильнее, чем в жидкости) Ограниченное, совершают колебания около положения равновесия – «оседлые» Строгий порядок – «дальний» порядок (кристаллическая решётка)