Свойства спектральной плотности мощности. Спектральная плотность мощности Спектральная мощность

Лекция 7.

СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ МОЩНОСТИ СЛУЧАЙНОГО ПРОЦЕССА

Подразумевая под случайным процессом множество (ансамбль) реализаций, необходимо иметь в виду, что реализациям, обладающим различной формой, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности по всем реализациям приводит к нулевому спектру процесса (при среднем = 0) из-за случайности и независимости фаз спектральных составляющих в различных реализациях. Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной величины, поскольку величина среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией x(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω . Введенную таким образом спектральную плотность S (ω) в дальнейшем будем называть энергетическим спектром функции x (t ) . Смысл такого названия определяется размерностью функции S (ω) , являющейся отношением мощности к полосе частот:

[S (ω) ] = [ мощность/ полоса частот ] = [мощность×время] = [энергия],

Энергетический спектр можно найти, если известен механизм образования случайного процесса. Здесь же мы ограничимся некоторыми определениями общего характера.

Методы вычисления СПМ

Функции спектральной плотности можно определять тремя различными эквивалентными способами, которые мы рассмотрим ниже:

С помощью ковариационных функций;

С помощью финитного преобразования Фурье;

С помощью фильтрации, возведения в квадрат и усреднения.

Определение спектров с помощью корреляционных функций.

Исторически первый способ определения спектральной плотности появился в математике. Он состоит во взятии преобразования Фурье от предварительно вычисленной корреляционной функции. После вычитания средних значений такие (бесконечные) преобразования Фурье обычно существуют, даже если (бесконечное) преобразование Фурье исходного процесса не существует. Этот подход дает двустороннюю спектральную плотность, определенную для частот f от - до + и обозначаемую S (f ) .

Пусть существуют корреляционные и взаимная корреляционная функции R x (t ), R y (t ) и R xy (t ) . Предположим также, что конечны интегралы от их абсолютных величин

R ( d

На практике эти условия всегда выполняются для реализаций конечной длины. Тогда ПФ функций R (t ) существуют и определяются формулами

S x (f)=

S y (f)=(1)

S xy (f)=

Такие интегралы по конечным реализациям существуют всегда. Функции S x (f ) и S y (f ) называют функциями спектральной плотности процессов x (t ) и y (t ) соответственно или просто спектральными плотностями, а функцию называют взаимной спектральной плотностью двух процессов x (t ) и y (t ) .

Обратные ПФ от формул (1) дают

R x (τ ) =

R y (τ ) = (2)

R xy (τ ) = df .

Соотношения (1) и (2) называют формулами Винера-Хинчина, которые в 30-е годы независимо установили связь между корреляционными функциями и спектральной плотностью через ПФ. При решении практических задач приходится допускать в R (t ) и S (f ) наличие дельта-функций.

Из свойств симметрии стационарных ковариационных функций следует

S x (-f) = S x (f) a S xy (-f) = S yx (f)


Следовательно, спектральная плотность S x (f ) – действительная четная функция, a S xy (f ) – комплексная функция от f .

Тогда спектральные соотношения из (1) можно преобразовать к виду

Взаимная спектральная плотность мощности(взаимный спектр мощности) двух реализаций и стационарных эргодических случайных процессов и определяется как прямое преобразование Фурье над их взаимной ковариационной функцией

или, с учетом соотношения между круговой и циклической частотами ,

Обратное преобразование Фурье связывает взаимные ковариационную функцию и спектральную плотность мощности:

Аналогично (1.32), (1.33) вводится спектральная плотность мощности(спектр мощности) случайного процесса

Функция обладает свойством четности:

Для взаимной спектральной плотности справедливо следующее соотношение:

где – функция, комплексно сопряженная к .

Введенные выше формулы для спектральных плотностей определены как для положительных, так и для отрицательных частот и носят название двухсторонних спектральных плотностей . Они удобны при аналитическом изучении систем и сигналов. На практике же пользуются спектральными плотностями, определенными только для неотрицательных частот и называемыми односторонними (рисунок 1.14):

Рисунок 1.14 – Односторонняя и двусторонняя

спектральные плотности

Выведем выражение, связывающее одностороннюю спектральную плотность стационарного СП с его ковариационной функцией:

Учтем свойство четности для ковариационной функции стационарного СП и функции косинус, свойство нечетности для функции синус, а также симметричность пределов интегрирования. В результате второй интеграл в полученном выше выражении обращается в нуль, а в первом интеграле можно сократить вдвое пределы интегрирования, удвоив при этом коэффициент:

Очевидно, что спектральная плотность мощности случайного процесса является действительной функцией.

Аналогично можно получить обратное соотношение:

Из выражения (1.42) при следует, что

Это означает, что общая площадь под графиком односторонней спектральной плотности равна среднему квадрату случайного процесса. Другими словами, односторонняя спектральная плотность интерпретируется как распределение среднего квадрата процесса по частотам.

Площадь под графиком односторонней плотности, заключенная между двумя произвольными значениями частоты и , равна среднему квадрату процесса в этой полосе частот спектра (рисунок 1.15):

Рисунок 1.15 – Свойство спектральной плотности

Взаимная спектральная плотность мощности является комплексной величиной, поэтому ее можно представить в показательной форме записи через модуль и фазовый угол :


где – модуль;

– фазовый угол;

, – действительная и мнимая части функции соответственно.

Модуль взаимной спектральной плотности входит в важное неравенство

Это неравенство позволяет определить функцию когерентности (квадрат когерентности), которая аналогична квадрату нормированной корреляционной функции:

Второй способ введения спектральных плотностей состоит в непосредственном преобразовании Фурье случайных процессов.

Пусть и – два стационарных эргодических случайных процесса, для которых финитные преобразования Фурье -х реализаций длины определяют в виде

Двусторонняя взаимная спектральная плотность этих случайных процессов вводится с использованием произведения через соотношение

где оператор математического ожидания означает операцию усреднения по индексу .

Расчет двусторонней спектральной плотности случайного процесса осуществляют по соотношению

Аналогично вводятся и односторонние спектральные плотности:

Функции , определенные формулами (1.49), (1.50), идентичны соответствующим функциям, определенным соотношениями (1.32), (1.33) как преобразования Фурье над ковариационными функциями. Это утверждение носит называние теоремы Винера-Хинчина.

Контрольные вопросы

1. Приведите классификацию детерминированных процессов.

2. В чем отличие между полигармоническими и почти периодическими процессами?

3. Сформулируйте определение стационарного случайного процесса.

4. Какой способ усреднения характеристик эргодического случайного процесса предпочтителен – усреднение по ансамблю выборочных функций или усреднение по времени наблюдения одной реализации?

5. Сформулируйте определение плотности распределения вероятности случайного процесса.

6. Запишите выражение, связывающее корреляционную и ковариационную функции стационарного случайного процесса.

7. В каком случае два случайных процесса считаются некоррелированными?

8. Укажите способы расчета среднего квадрата стационарного случайного процесса.

9. Каким преобразованием связаны спектральная плотность и ковариационная функции случайного процесса?

10. В каких пределах изменяются значения функции когерентности двух случайных процессов?

Литература

1. Сергиенко, А.Б. Цифровая обработка сигналов / А.Б. Сергиенко. – М: Питер, 2002.– 604 с.

2. Садовский, Г.А. Теоретические основы информационно-измерительной техники / Г.А. Садовский. – М.: Высшая школа, 2008. – 480 с.

3. Бендат, Д. Применение корреляционного и спектрального анализа / Д. Бендат, А. Пирсол. – М.: Мир, 1983. – 312 с.

4. Бендат, Д. Измерение и анализ случайных процессов / Д. Бендат, А. Пирсол. – М.: Мир, 1974. – 464 с.

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную форму, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, введенной в § 2.6 или 2.1, по всем функциям приводит к нулевому спектру процесса (при ) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте . Размерность функции , являющейся отношением мощности к полосе астот, есть

Спектральную плотность случайного процесса можно найти, если известен механизм образования случайного процесса. Применительно к шумам, связанным с атомистической структурой материи и электричества, эта задача будет рассмотрена в § 7.3. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию и ограничив ее длительность конечным интервалом Т, можно применить к ней обычное преобразование Фурье и найти спектральную плотность (со). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью формулы (2.66):

Разделив эту энергию на получим среднюю мощность k-й реализации на отрезке Т

При увеличении Т энергия возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход получим

представляет собой спектральную плотность средней мощности рассматриваемой реализации.

В общем случае величина должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция характеризует весь процесс в целом.

Опуская индекс k, получаем окончательное выражение для средней мощности случайного процесса

Если рассматривается случайный процесс с ненулевым средним значением то спектральную плотность следует представить в форме

Величина, характеризующая распределение энергии по спектру сигнала и называемая энергетической спектральной плотностью, существует лишь для сигналов, У которых энергия за бесконечный интервал времени конечна и, следовательно, к ним применимо преобразование Фурье.

Для незатухающих во времени сигналов энергия бесконечно велика и интеграл (1.54) расходится. Задание спектра амплитуд невозможно. Однако средняя мощность Рср, определяемая соотношением

оказывается конечной. Поэтому применяется более широкое понятие "спектральная плотность мощности". Определим ее как производную средней мощности сигнала по частоте и обозначим Сk(щ):

Индексом k подчеркивается, что здесь мы рассматриваем спектральную плотность мощности как характеристику детерминированной функции u(t), описывающей реализацию сигнала.

Эта характеристика сигнала менее содержательна, чем спектральная плотность амплитуд, так как лишена фазовой информации [см. (1.38)]. Поэтому однозначно восстановить по ней исходную реализацию сигнала невозможно. Однако отсутствие фазовой информации позволяет применить это понятие к сигналам, у которых фаза не определена.

Для установления связи между спектральной плотностью Сk(щ) и спектром амплитуд воспользуемся сигналом u(t), существующим на ограниченном интервале времени (-T<. t

где - спектральная плотность мощности сигнала, ограниченного во времени.

В дальнейшем будет показано (см. § 1.11), что, усредняя эту характеристику по множеству реализаций, можно получить спектральную плотность мощности для большого класса случайных процессов.

Функция автокорреляции детерминированного сигнала

Теперь в частотной области имеется две характеристики: спектральная характеристика и спектральная плотность мощности. Спектральной характеристике, содержащей полную информацию о сигнале u(t), соответствует преобразование Фурье в виде временной функции. Выясним, чему соответствует во временной области спектральная плотность мощности, лишенная фазовой информации.

Следует предположить, что одной и той же спектральной плотности мощности соответствует множество временных функций, различающихся фазами. Советским ученым Л.Я. Хинчиным и американским ученым Н. Винером практически одновременно было найдено обратное преобразование Фурье от спектральной плотности мощности:


Обобщенную временную функцию r(), не содержащую фазовой информации, назовем временной автокорреляционной функцией. Она показывает степень связи значений функции u(t), разделенных интервалом времени, и может быть получена из статистической теории путем развития понятия коэффициента корреляции. Отметим, что во временной функции корреляции усреднение проводится по времени в пределах одной реализации достаточно большой продолжительности.

Справедливо и второе интегральное соотношение для пары преобразования Фурье:

Пример 1.6 Определить временную функцию· автокорреляции гармонического сигнала u(t) = u0 cos(t-ц). В соответствии с (1.64)

Проведя несложные преобразования


окончательно имеем

Как и следовало ожидать, ru() не зависит от ц и, следовательно, (1.66) справедливо для целого множества гармоник, различающихся фазами.

1) По своему физическому смыслу спектр мощности вещественен и неотрицателен:

Поэтому по спектру мощности принципиально невозможно восстановить какую - либо отдельно взятую реализацию случайного процесса.

2) Поскольку чётная функция аргумента , то соответствующий спектр мощности представляет собой чётную функцию частоты . Отсюда следует, что пару преобразований Фурье (6.14), (6.15) можно записать, используя интегралы в полубесконечных пределах:

(6.17)

(6.18)

3. Целесообразно ввести так называемый односторонний спектр мощности случайного процесса, определив его следующим образом:

(6.19)

Функция позволяет вычислить дисперсию стационарного случайного процесса путём интегрирования по положительным (физическим частотам):

(6.20)

4. В технических расчётах часто вводят односторонний спектр мощности N(f), представляющий собой среднюю мощность случайного процесса, приходящуюся на интервал частот шириной в 1 Гц:

(6.21)

При этом, как легко видеть

Весьма важным параметром случайных процессов является интервал корреляции. Случайные процессы, как правило, обладают следующими свойствами: их функция корреляции стремится к нулю с увеличением временного сдвига . Чем быстрее убывает функция , тем меньше оказывается статистическая связь между мгновенными значениями случайного сигнала в два несовпадающих момента времени.

Числовой характеристикой, служащей для оценки «скорости изменения» реализации случайного процесса, является интервал корреляции определяемый выражением:

(6.22)

Если известна информация о поведении какой-либо реализации «в прошлом», то возможен вероятностный прогноз случайного процесса на время порядка .

Ещё одним существенным параметром для случайного процесса является эффективная ширина спектра. Пусть исследуемый случайный процесс характеризуется функцией - односторонним спектром мощности, причём - экстремальное значение этой функции. Заменим мысленно данный случайный процесс другим процессом, у которого спектральная плотность мощности постоянна и равна в пределах эффективной полосы частот , выбираемой из условия равенства средних мощностей обоих процессов:

Отсюда получается формула для эффективной ширины спектра:

(6.23)

Вне пределов указанной полосы спектральная плотность случайного процесса считается равной 0.

Этой числовой характеристикой часто пользуются для инженерного расчёта дисперсии шумового сигнала: .



Если реализации случайного процесса имеют размерность напряжения (В), то относительный спектр мощности N имеет размерность .

Белый шум и его свойства. Гауссовский случайный процесс.

А) Белый шум.

стационарный случайный процесс с постоянной на всех частотах спектральной плотностью мощности называется белым шумом.

(7.1)

По теореме Винера-Хинчина функция корреляции белого шума:

равна нулю всюду кроме точки . Средняя мощность (дисперсия) белого шума неограниченно велика.

Белый шум является дельта-коррелированным процессом. Некоррелированность мгновенных значений такого случайного сигнала означает бесконечно большую скорость изменения их во времени – как бы мал ни был интервал , сигнал за это время может измениться на любую наперёд заданную величину.

Белый шум является абстрактной математической моделью и отвечающий ему физический процесс, безусловно, не существует в природе. Однако это не мешает приближённо заменять реальные достаточно широкополосные случайные процессы белым шумом в тех случаях, когда полоса пропускания цепи, на которую воздействует случайный сигнал, оказывается существенно уже эффективной ширины спектра шума.