Мягкое и жесткое самовозбуждение автогенератора. Принципы построения автогенераторов. Обобщенная схема трехточечного автогенератора

Чтобы выявить особенности самовозбуждения генератора и определить стационарную амплитуду выходных колебаний, удобно использовать метод совместного анализа амплитудной характеристики усилителя К и прямой линии ОС β= U ОС / U ВЫХ, отражающей влияние цепи ПОС (рис. 5). Отметим, что амплитудная характеристика собственно усилителя в теории генераторов соответствует колебательной характеристике. Суть метода традиционна и заключается в том, что схему генератора (см. рис. 3) мысленно (и по существу) разделяют на две цепи - линейную и нелинейную. Линейная цепь представляет петлю ПОС, а нелинейная - собственно усилитель (ОУ и цепь ООС).

Мягкий режим самовозбуждения . Типичный вид амплитудной характеристики нелинейного усилителя на ОУ (рис. 5, а). При малой амплитуде входного напряжения U ВЫХ /U ВХ =К. С ростом же амплитуды начинает проявляться нелинейность передаточной характеристики ОУ, и коэффициент усиления К (а значит, и выходное напряжение) будет практически постоянным и даже может уменьшаться. На линейном участке напряжение ОС U ОС = U BX линейно связано с выходным напряжением U ВЫХ и определяется коэффициентом передачи цепи ПОС β (ведь U ОС = β U ВЫХ). Это напряжение действует на входе усилителя, поэтому линию ОС (зависимость U ВЫХ от U ОС) проводят на графике в виде прямой линии βпод углом γ = arctg(l/β) к оси абсцисс (см. рис.5, а).

Положим, что на вход усилителя воздействует небольшое входное напряжение U BX1 . Тогда после усиления в К раз на выходе генератора появится напряжение U ВЫХ1 . Это напряжение, ослабленное цепью положительной ОС в β раз, поступает на вход усилителя в виде напряжения U BX2 . Оно затем, в свою очередь, усилится до напряжения U ВЫХ2 . Подобный процесс будет протекать до тех пор, пока амплитуда выходного колебания не достигнет стационарного значения, при котором выполняется условие баланса амплитуд.

Стационарную амплитуду автоколебаний генератора можно определить по координатам точки пересечения амплитудной характеристики усилителя с линией ОС (точка А на рис. 5, а). Точка А является точкой устойчивого равновесия, и при случайном отклонении амплитуды выходного напряжения от стационарного значения U СТ автогенератор всегда возвращается в исходное состояние. Допустим, что амплитуда выходного напряжения U ВЫХ уменьшилась относительно U СТ на величину ∆U ВЫХ. Это вызовет снижение напряжения ОС U ОС на значение ∆U ОС, что, в соответствии с амплитудной характеристикой, в свою очередь, приведет к увеличению выходного напряжения U ВЫХ. При этом выходное напряжение будет расти до стационарного значения U СТ, а нестабильность напряжения ОС ∆U ОС уменьшится до нуля и перейдет в точку U ОССТ. Исследуем влияние значения коэффициента передачи цепи ПОС β на режим самовозбуждения автогенератора гармонических колебаний с типом амплитудной характеристики усилителя, показанной на рис. 5, б. Кстати заметим, что изменение значения коэффициента передачи цепи ПОС β в схеме рис. 3 можно осуществлять либо регулировкой значения сопротивления резистора R, либо изменением коэффициента включения колебательного контура (неполным включением контура).

Если плавно увеличивать коэффициент передачи β (уменьшать наклон линии β), то, начиная с некоторого критического значения βкр, амплитуда стационарного колебания f/CT будет нарастать (см. рис. 5). Такой режим самовозбуждения генератора называют мягким. Для его обеспечения амплитудная характеристика усилителя должна выходить из нуля и иметь достаточно большой угол наклона к оси абсцисс в начале координат. Мягкий режим характерен тем, что подбором коэффициента передачи β можно установить любую, очень небольшую (близкую к уровню шумов), стационарную амплитуду выходных колебаний. В мягком режиме самовозбуждения на выходе генератора возникают колебания при появлении на входе усилителя малых уровней шумовых напряжений.


Рис.5. Мягкий режим самовозбуждения автогенератора:

а - амплитудная характеристика и линия обратной связи;

б - зависимость амплитуды U от коэффициента передачи β

Жесткий режим самовозбуждения. Другая картина процессов

наблюдается в процессах в автогенераторах, амплитудная характеристика усилителя которых имеет S-образную форму (рис. 6, а). Такой амплитудной характеристикой обладает усилитель при расположении его рабочей точки на нелинейном участке передаточной характеристики ОУ. Для самовозбуждения автогенераторов требуется очень сильная ПОС, и выходные колебания возникают мгновенно - скачком. Резкое («взрывное») самовозбуждение автогенератора происходит при значении коэффициента передачи цепи ОС β = β 1 когда линия ОС (линия 1 на рис. 6, а) касается снизу амплитудной характеристики в точке 0. Генерация колебаний срывается скачком при значении коэффициента передачи β, меньшем β 2 , когда линия ОС (линия 2) становится касательной к выпуклой части амплитудной характеристики. На графиках рис.6, а точка А отражает стационарный режим работы автогенератора, а точка С - режим неустойчивого равновесия. Такое положение объясняют следующим образом: при амплитудах выходных колебаний автогенератора, располагающихся на графиках ниже точки С, колебания затухают, а при амплитудах, находящихся выше точки С, - будут нарастать и достигнут стационарной амплитуды в точке А.

АНАЛИЗ РЕЖИМОВ САМОВОЗБУЖДЕНИЯ. БАЗОВЫЕ СХЕМЫ


Введение

Сравнительный анализ режимов самовозбуждения генератора

Автогенератор с трансформаторной обратной связью

Автогенератор на туннельном диоде

Обобщенная схема трехточечного генератора

Заключение

Литература


Введение

Проведя сравнительный анализ режимов самовозбуждения автогенератора, отметив достоинства и недостатки этих режимов, необходимо акцентировать внимание на совмещении их достоинств в автоматическом смещении путем анализа конкретных схем его обеспечения.

Рассматривая базовые схемы автогенераторов с применением трансформаторов и туннельных диодов, особое внимание следует уделить на понимание курсантами физических процессов, происходящих при самовозбуждении и работе генераторов, а также сделать опору на изученные теоретические основы автоколебаний.

Первый патент на трехточечную схему выдан инженеру американской фирмы "Вестерн электрик" Р. Хартлею (1975 г.), имя которого она носит в радиотехнической литературе. Это индуктивная трехточка. В схеме Хартлея обратная связь изменяется путем перемещения точки присоединения катода по виткам катушки индуктивности контура. В 1918 году инженер той же фирмы Э. Колпитц запатентовал схему лампового генератора с емкостной обратной связью. Схемы Хартлея и Колпитца являются основными схемами автогенераторов и прототипами всех исторически более поздних автогенераторов.

В конце первой мировой войны в ламповой технике генерирования незатухающих колебаний были сделаны попытки использовать внутриламповые емкости. Положительная обратная связь через емкость сетка-анод триода, с которой боролись в радиоприемниках, здесь оказалась полезной. Одна из ранних схем такого типа имела два контура – один в анодной цепи, другой – в сеточной цепи и была эквивалентна индуктивной трехточке. Колебания возникали, когда контуры были несколько расстроены относительно частоты генерации и имели индуктивное сопротивление. Эта схема нашла применение на коротких волнах в радиолюбительской практике 20-х годов. Позднее появились другие варианты двухконтурных генераторов. Важно подчеркнуть, что все они сводились либо к индуктивной, либо к емкостной трехточкам. Принципы построения ламповых генераторов сохранились до наших дней, несмотря на то, что элементная база шагнула далеко вперед (от лампового триода до интегральных микросхем).


Сравнительный анализ режимов самовозбуждения генератора

Проведем сравнительный анализ режимов самовозбуждения, используя при этом различные характеристики автогенератора.

Мягкий режим.

i K (u БЭ) с наибольшей крутизной, то режим самовозбуждения называется мягким.

Проследим за изменениями амплитуды тока первой гармоники в зависимости от величины коэффициента обратной связи К ОС. Изменение К ОС приводит к изменению угла наклона a прямой обратной связи (рис.1)

Рис. 1 Мягкий режим самовозбуждения

При К ОС = К ОС1 состояние покоя устойчиво и генератор не возбуждается, амплитуда колебаний равна нулю (рис. 1 б). Величина К ОС = К ОС2 = К КР является граничной (критической) между устойчивостью и неустойчивостью состояния покоя. При К ОС = К ОС3 > К КР состояние покоя неустойчиво, генератор возбудится, и величина I m 1 установится соответствующей точке А. При увеличении К ОС величина первой гармоники выходного тока будет плавно расти и при К ОС = К ОС4 установится в точке Б. При уменьшении К ОС амплитуда колебаний будет уменьшаться по той же кривой и колебания сорвутся при коэффициенте обратной связи К ОС = К ОС2 < К КР.

В качестве выводов можно отметить следующие особенности мягкого режима самовозбуждения:

Для возбуждения не требуется большой величины коэффициента обратной связи К ОС;

Возбуждение и срыв колебаний происходят при одном и том же значении коэффициента обратной связи К КР;

Возможна плавная регулировка амплитуды стационарных колебаний путем изменения величины коэффициента обратной связи К ОС;

Как недостаток следует отметить большое значение постоянной составляющей коллекторного тока, что приводит к малому значению КПД.

Жесткий режим.

Если рабочая точка находится на участке характеристики i K = f (u БЭ) с малой крутизной S < S MAX , то режим самовозбуждения называется жестким.

Проведем анализ режима (аналогично мягкому режиму самовозбуждения) по колебательной характеристике автогенератора I m 1 = f (U m БЭ) и характеристике I m 1 = f (К ОС), представленных на рисунках 2 а) и б) соответственно.

Рис. 2 Жесткий режим самовозбуждения

Анализируя точки пересечения прямых обратной связи с колебательной характеристикой, приходим к выводу, что возбуждение автогенератора произойдет, когда коэффициент обратной связи превысит величину К ОС3 = К ОСКР. Дальнейшее увеличение К ОС приводит к небольшому увеличению амплитуды первой гармоники выходного (коллекторного) тока I m 1 по пути В-Г-Д. Уменьшение К ОС до К ОС1 не приводит к срыву колебаний, так как точки В и Б устойчивы, а точка А устойчива справа. Колебания срываются в точке А, т. е. при К ОС < К ОС1 , так как точка А неустойчива слева.

Таким образом, можно отметить следующие особенности работы генератора при жестком режиме самовозбуждения:

Для самовозбуждения требуется большая величина коэффициента обратной связи К ОС;

Возбуждение и срыв колебаний происходят ступенчато при разных значениях коэффициента обратной связи К ОС;

Амплитуда стационарных колебаний в больших пределах изменяться не может;

Постоянная составляющая коллекторного тока меньше, чем в мягком режиме, следовательно, значительно выше КПД.

Сравнивая положительные и отрицательные стороны рассмотренных режимов самовозбуждения, приходим к общему выводу: надежное самовозбуждение генератора обеспечивает мягкий режим, а экономичную работу, высокий КПД и более стабильную амплитуду колебаний – жесткий режим.

Стремление объединить эти преимущества привело к идее использования автоматического смещения, когда генератор возбуждается при мягком режиме самовозбуждения, а его работа происходит в жестком режиме. Сущность автоматического смещения рассмотрена ниже.

Автоматическое смещение.

Сущность режима заключается в том, что для обеспечения возбуждения автогенератора в мягком режиме исходное положение рабочей точки выбирается на линейном участке проходной характеристики с максимальной крутизной. Эквивалентное сопротивление контура выбирается таким, чтобы выполнялись условия самовозбуждения. В процессе нарастания амплитуды колебаний режим по постоянному току автоматически изменяется и в стационарном состоянии устанавливается режим работы с отсечкой выходного тока (тока коллектора), т. е. автогенератор работает в жестком режиме самовозбуждения на участке проходной характеристики с малой крутизной (рис. 3).

Рис. 3 Принцип автоматического смещения автогенератора

Напряжение автоматического смещения получают обычно за счет тока базы путем включения в цепь базы цепочки R Б C Б (рис. 4).

Рис. 4. Схема автоматического смещения за счет тока базы

Начальное напряжение смещения обеспечивается источником напряжения Е Б. При возрастании амплитуды колебаний увеличивается напряжение на резисторе R Б, создаваемое постоянной составляющей базового тока I Б0 . Результирующее напряжение смещения (Е Б - I Б0 R Б) при этом уменьшается, стремясь к Е БСТ.

В практических схемах начальное напряжение смещения обеспечивается с помощью базового делителя R Б1 , R Б2 (рис. 5).

Рис. 5. Автоматическое смещение с помощью базового делителя

В этой схеме начальное напряжение смещения

где – ток делителя.

При возрастании амплитуды колебаний постоянная составляющая тока базы I Б 0 увеличивается и смещение Е Б уменьшается по величине, достигая значения Е БСТ в установившемся режиме. Конденсатор С Б предотвращает короткое замыкание резистора R Б1 по постоянному току.

Следует отметить, что введение в схему генератора цепи автоматического смещения может привести к явлению прерывистой генерации. Причиной ее возникновения является запаздывание напряжения автоматического смещения относительно нарастания амплитуды колебаний. При большой постоянной времени t = R Б С Б (рис. 8.41) колебания быстро нарастают, а смещение остается практически неизменным – Е Б.НАЧ. Далее смещение начинает изменяться и может оказаться меньше той критической величины, при которой еще выполняются условия стационарности, и колебания сорвутся. После срыва колебаний емкость С Б будет медленно разряжаться через R Б и смещение вновь будет стремиться к Е Б.НАЧ. Как только крутизна станет достаточно большой, генератор снова возбудится. Далее процессы будут повторяться. Таким образом, колебания периодически будут возникать и снова срываться.

Прерывистые колебания, как правило, относятся к нежелательным явлениям. Поэтому очень важно расчет элементов цепи автоматического смещения проводить так, чтобы исключить возможность возникновения прерывистой генерации.

Для исключения прерывистой генерации в схеме (рис. 3) величину C Б выбирают из равенства

Автогенератор с трансформаторной обратной связью

Рассмотрим упрощенную схему транзисторного автогенератора гармонических колебаний с трансформаторной обратной связью (рис. 6).

Рис. 6. Автогенератор с трансформаторной обратной связью

Назначение элементов схемы:

1) транзистор VT p - n - p типа, выполняет роль усилительного нелинейного элемента;

2) колебательный контур L K C K G Э задает частоту колебаний генератора и обеспечивает их гармоническую форму, вещественная проводимость G Э характеризует потери энергии в самом контуре и во внешней нагрузке, связанной с контуром;

3) катушка L Б обеспечивает положительную обратную связь между коллекторной (выходной) и базовой (входной) цепями, она индуктивно связана с катушкой контура L К (коэффициент взаимоиндукции М);

4) источники питания Е Б и Е К обеспечивают необходимые постоянные напряжения на переходах транзистора для обеспечения активного режима его работы;

5) конденсатор С Р разделяет генератор и его нагрузку по постоянному току;

6) блокировочные конденсаторы С Б1 и С Б2 шунтируют источники питания по переменному току, исключая бесполезные потери энергии на их внутренних сопротивлениях.

Физические процессы в генераторе.

При подключении источников питания Е Б и Е К эмиттерный переход смещается в прямом направлении и возникает коллекторный ток i К (t), который в начале замыкается от + Е К через эмиттер – базу – коллектор транзистора и емкость С К на - Е К, поскольку емкость для перепада тока представляет собой короткое замыкание. Конденсатор С К заряжается, а затем начинает разряжаться через элементы контура L K G Э и в контуре возникают свободные колебания. Колебательный ток, проходя через L К, создает ЭДС взаимоиндукции в катушке L Б. Эта ЭДС прикладывается к эмиттерному переходу транзистора через емкость С Б1 и управляет токами базы и коллектора. Переменная составляющая коллекторного тока, протекающая по цепи: коллектор, контур L K C K G Э, эмиттер, база, коллектор, восполняет потери энергии в контуре и, если выполнены условия самовозбуждения, то колебания в нем будут нарастать по амплитуде. Первое условие самовозбуждения называется фазовым и оно достигается тем, что катушка L Б включается встречно катушке L К. В этом случае напряжение на базе U БЭ будет изменяться в противофазе с напряжением на коллекторе (соответственно, и с напряжением на контуре U К) и выходная проводимость транзистора окажется отрицательной. Это означает, что транзистор является источником энергии по переменному току. Но одного фазового условия недостаточно, необходимо еще выполнение амплитудного условия самовозбуждения, т. е. чтобы энергия W (+), поступающая в контур от транзистора, превышала потери энергии W (-) на проводимости G Э. Практически это достигается выбором М > М КР, где М КР – величина М, при которой выполняется равенство W (+) = W (-). Частота генерируемых колебаний примерно равна резонансной частоте контура

поскольку при Q >> 1, величина коэффициента затухания d

Достоинства схемы : возможность плавной, независимой регулировки частоты (путем изменения С К) и амплитуды (путем изменения М) колебаний.

При расчете параметров генератора необходимо определить частоту генерируемых колебаний, резонансную частоту контура, добротность контура, а также выполнение амплитудного и фазового условия самовозбуждения.

Пример

Автогенератор с трансформаторной обратной связью (рис. 6) имеет параметры контура L K = 3 мкГн, С К = 90 пФ, G Э = 25 Ом.

Определить частоту собственных затухающих колебаний колебательного контура w 1 , резонансную частоту w 0 и добротность Q колебательного контура.

Решение задачи.

Поскольку включение катушек L Б и L K произведено встречно, что обеспечивает противофазное изменение напряжений на базе и коллекторе транзистора, то фазовое условие самовозбуждения выполнено. Амплитудное условие самовозбуждения будет достигнуто выбором М > М КР.

Для определения режима свободных колебаний в контуре рассчитаем его параметры.

Частота собственных колебаний контура определяется выражением

Для ее определения вычислим резонансную частоту контура и коэффициент затухания контура:

Добротность контура вычислим по формуле


Как видно из приведенных расчетов, частота собственных колебаний и резонансная частота контура, при добротности Q >> 1, практически совпадает (квазиколебательный режим), что подтверждает теоретические положения.

Автогенератор на туннельном диоде

Исторически туннельные диоды появились значительно позже, чем транзисторы и лампы. Малые габариты и вес, высокая надежность и экономичность обусловили быстрое расширение области их применения. Вольт-амперная характеристика у туннельного диода – типа N (рис. 7). Поэтому схема автогенератора получается просто: к диоду подключают параллельный контур по переменному току (рис. 8.44 б), а режим по постоянному току выбирают так, чтобы рабочая точка О оказалась на падающем участке характеристики (рис. 7).

Рис.7. Вольт-амперная характеристика и схема генератора на туннельном диоде

Режим по постоянному току должен обеспечиваться с учетом внутреннего сопротивления источника R i . Для этого необходимо решить систему двух уравнений:


Графическое решение системы показано на рисунке 8.44 а.

Рассмотрим два случая.

В первом случае, при крутизне наклона характеристики |S (U 0)| > 1/R i , существует три возможных состояния, удовлетворяющих уравнениям системы – точки А, О, Б. Анализ, с учетом емкости самого диода, показывает, что только точки А и Б, расположенные на нарастающих участках характеристики, являются устойчивыми. Если точка покоя (точка О) находится на участке характеристики с отрицательным наклоном, то состояние схемы будет неустойчивым и рабочая точка самопроизвольно смещается в одно из крайних положений (в точку А или точку Б).

Во втором случае, при крутизне наклона характеристики |S (U 0)| < 1/R i , существует лишь одно состояние, удовлетворяющее уравнениям – точка О. Оно оказывается устойчивым и поэтому рабочая точка может быть установлена на любом участке вольт-амперной характеристики с отрицательной крутизной, следовательно, фазовое условие самовозбуждения выполняется. Амплитудное условие самовозбуждения будет выполнено, если |S (U 0)| > G Э, где G Э – проводимость контура в точках подключения диода.

Частота колебаний равна

и может изменяться с помощью С К. Амплитуда колебаний изменяется путем изменения точки подключения диода к колебательному контуру. Если катушки L 1 и L 2 не связаны единым магнитным полем, то коэффициент включения контура равен


Если же катушки L 1 и L 2 образуют единую катушку с общим магнитным полем, то диод подключается к индуктивной ветви с коэффициентом включения, равным

где n 1 и n 2 – число витков в частях катушки, обозначенных на схеме L 1 и L 2 .

Блокировочная емкость С Б выбирается из условия

Достоинства схемы:

1) способность работать в очень широком диапазоне частот (от единиц килогерц до десятков гигагерц);

2) высокая стабильность параметров при изменении температуры в широких пределах;

3) низкий уровень собственных шумов;

4) малое потребление энергии от источников питания;

5) длительный срок службы;

6) малая чувствительность к воздействию радиации.

Недостаток схемы – малая выходная мощность, что обусловлено малыми интервалами токов и напряжений в пределах падающего участка характеристики (с отрицательной крутизной). Например, генератор на одном туннельном диоде с пиковым током до 10 мА обеспечивает мощность, не превышающую единиц милливатт. Для получения большей мощности необходимо применять диоды с большими пиковыми токами.

Обобщенная схема трехточечного автогенератора

Кроме схемы автогенератора с трансформаторной обратной связью существуют так называемые трехточечные схемы автогенераторов синусоидальных колебаний. В них нет катушек связи и положительная обратная связь достигается автотрансформаторным (потенциометрическим) подключением цепи обратной связи к контуру, т. е. обратная связь реализована с помощью реактивных делителей напряжения емкостного или индуктивного типа.

В трехточечном автогенераторе активный прибор (лампа или транзистор) подключается к колебательному контуру в трех точках. Изобразим обобщенную схему замещения трехточечного генератора по переменному току, которая будет справедлива для любого генератора такого типа (рис. 8).

Рис. 8. Обобщенная схема замещения трехточечного автогенератора

Контур состоит из двухполюсников , , , которые обычно имеют столь малые потери, что можно считать их чисто реактивными:

Обобщенная схема содержит усилитель с коэффициентом усиления


и нагрузкой в виде контура Х 1 Х 2 Х 3 , а также цепь обратной связи, передающую часть выходного напряжения усилителя обратно на его вход с коэффициентом передачи

Поскольку

Фаза коэффициента усиления j К в схеме с общим эмиттером (катодом) на резонансной частоте контура равна 180°, так как сопротивление контура на этой частоте чисто активно, а усилитель с общим эмиттером инвертирует сигнал. Следовательно, для выполнения фазового условия самовозбуждения генератора j К + j b = 360° необходимо, чтобы j b = 180°. Это будет выполняться, если b будет действительной и отрицательной величиной. В соответствии с (8.40) можно утверждать, что это будет выполняться при двух условиях:

1) Х 1 и Х 3 должны быть разного знака (разного характера реактивности);

2) |Х 3 | > |X 1 |.Частота генерируемых колебаний равна резонансной частоте контура, так как фазовое условие будет выполняться только на этой частоте. Из условия резонанса в контуре Х 1 + Х 2 + Х 3 = 0 следует, что Х 2 должен иметь знак, одинаковый с Х 1 и тогда

Таким образом, можно сформулировать правило построения трехточечного генератора: между общим и управляющим, общим и выходным электродами усилительного элемента должны быть включены реактивные элементы одинакового характера реактивности, а между управляющим и выходным электродами – элемент противоположного характера реактивности.

Соблюдение данного правила гарантирует выполнение фазового условия самовозбуждения генератора.

Если реактивные двухполюсники являются одноэлементными, то возможны всего два варианта трехточечных генераторов (рис. 9).

Рис. 9. Схемы трехточечных генераторов

Схему, представленную на рисунке 9, а называют индуктивной трехточкой, а на рисунке 8.46, б – емкостной трехточкой.

Все вышеприведенные рассуждения и выводы справедливы и для трехточечных автогенераторов, собранных на лампе. Нетрудно изобразить и аналогичные схемы индуктивной и емкостной трехточки.

Следует подчеркнуть, что двухполюсники , , , входящие в контур, могут быть получены как полные сопротивления сколь угодно сложных схем (например, колебательных контуров), важно лишь, чтобы на частоте генерируемых колебаний они создавали нужную реактивность. В схемах автогенераторов могут отсутствовать конденсаторы колебательных контуров, так как вместо них используются междуэлектродные емкости.


Заключение

Каждая схема имеет свои достоинства и недостатки. Появление новых схем обусловлено желанием улучшить те или иные свойства имеющихся схем. Например, желание получить возможность независимой регулировки частоты и амплитуды колебаний на всех более высоких частотах вместе с определенными конструктивными удобствами, получить более высокую стабильность частоты и т. д. Однако одновременного улучшения всех свойств, как правило, достичь не удается в силу их противоречивости, поэтому приходится отдавать предпочтение той или иной схеме в зависимости от условий применения.


Литература:

1. Богданов Н. Г., Лисичкин В. Г. Основы радиотехники и электроники. Часть 8, 2000г..

2. Никольский И. Н., Хопов В. Б., Варокосин Н. П., Григорьев В. А., Колесников А. А. Нелинейные радиотехнические устройства связи. 1972.

В зависимости от значений постоянных питающих напряжений, подведенных к электродам усилительного элемента, и от коэффициента К ос возможны два режима самовозбуждения: мягкий и жесткий.

1.Режим мягкого самовозбуждения.

В данном режиме рабочую точку А выбирают на линейном участке вольт-амперной характеристики усилительного элемента, что обеспечивает начальный режим работы усилительного элемента без отсечки выходного тока i вых (рис. №2).

Рис. № 2. Диаграмма, мягкого режима самовозбуждения.

В этих условиях самовозбуждение возникает от самых незначительных изменений входного напряжения U вх, всегда имеющихся в реальных условиях из-за флуктуаций носителей заряда.

Сначала колебания в автогенераторе нарастают относительно быстро. Затем из-за нелинейности вольт-амперной характеристики усилительного элемента рост амплитуды колебаний замедляется, поскольку напряжение на его входе попадает на участки вольт-амперной характеристики со все меньшей статической крутизной, а это приводит к уменьшению средней крутизны S ср и коэффициента передачи К ос цепи обратной связи.

Нарастание колебаний происходит до тех пор, пока коэффициент передачи К уменьшится до единице. В результате в автогенераторе установиться стационарный режим, которому соответствует определенная амплитуда выходных колебаний, причем угол отсечки выходного тока 0>90 0 . Частота этих колебаний очень близка к резонансной частоте колебательной системы.

Если бы усилительный элемент имел линейную вольт-амперную характеристику, нарастание амплитуды автоколебаний происходило бы до бесконечности, что физически невозможно. Поэтому в линейной цепи получить устойчивые автоколебания с постоянной амплитудой невозможно.

Из-за нелинейности воль-амперной характеристики форма выходного тока i вых усилительного элемента получается несинусоидальной. Однако при достаточно большой добротности (50…200) колебательной системы первая гармоника этого тока и, следовательно, напряжение на выходе автогенератора представляют собой почти гармонические колебания.

2. Режим жесткого самовозбуждения.

При этом режиме напряжение смещения U 0 задают таким, чтобы при малых амплитудах входного напряжения ток через усилительный элемент не проходил. Тогда незначительный колебания, возникшие в контуре, не могут вызвать ток выходной цепи, и самовозбуждение автогенератора не наступает. Колебания возникают только при их достаточно большой начальной амплитуде, что не всегда можно обеспечить. Процесс возникновения и нарастания колебаний при жестком режиме самовозбуждения иллюстрирует с помощью рис.№3.

Рис.№ 3. Диаграмма жесткого самовозбуждения

Из рассмотрения этого рисунка видно, что при малых начальных амплитудах входного напряжения (кривая1) ток i вых =0 и автоколебания не возникают. Они возникают только при достаточно большой начальной амплитуде напряжения (кривая 2) и быстро нарастают до установившегося значения. В стационарном режиме усилительный элемент работает у углами отсечки выходного тока 0<90 0 .

Для удобства эксплуатации автогенератора целесообразнее применить мягкий режим самовозбуждения, так как в этом режиме колебания возникают сразу после включения источника питания. Однако при жестком режиме колебаний с углом отсечки 0<90 0 обеспечиваются более высокий КПД автогенератора и меньшие тепловые потери. Поэтому в стационарном режиме автогенератора более выгоден именно режим с малыми углами отсечки выходного тока усилительного тока усилительного элемента.

Автоматическое смещение. Его применение обеспечивает возможность работы автогенератора при первоначальном включении в режиме мягкого самовозбуждения с последующими автоматическим переходом в режим жесткого самовозбуждения. Этого достигают применением в автогенераторе специальной цепи автоматического смещения.

На рис.№ 4а изображена упрощенная принципиальная схема автогенератора на биполярном транзисторе VT, нагрузкой которого служит колебательный контур L2C2. Напряжение положительной обратной связи создается на катушке L1 и подводится между базой и эмиттером транзистора. Начальное напряжение6 смещения на базе транзистора создается источником включена цепь авто-смещения R1C1.

Процесс возникновения и нарастания колебаний иллюстрируется с помощью рис.№ 4б. В первый момент после включения генератора, т.е. в момент появления колебаний, рабочая точка А находится на участке максимальной крутизны вольт-амперной характеристики транзистора. Благодаря этому колебания возникают легко в условиях мягкого режима самовозбуждения. По мере возрастания амплитуды увеличивается ток базы, постоянная составляющая которого создает падение напряжения U см на резисторе R1 (переменная составляющая этого тока проходит через конденсатор C1). Так как напряжение U см приложено между базой и эмиттером в отрицательной полярности, результирующее постоянное напряжение на базе U 0 - U см уменьшается, что вызывает смещение рабочей точки вниз по характеристике транзистора и переводит автогенератор в режим работы с малыми углами отсечки коллекторного тока при этом токи коллектора i к и базы i б имеют вид последовательности импульсов, а напряжение на выходе U вых, создаваемое первой гармоникой коллекторного тока, представляет собой синусоидальное колебание с неизменной амплитудой.

Таким образом, цепь автоматического смещения R1C1в автогенераторе выполняет роль регулятора процесса самовозбуждения и обеспечивает в первоначальный момент условия мягкого самовозбуждения с последующим переходом в более выгодный режим с малыми углами отсечки.

Вернемся к рис. 9.6 и выясним поведение автогенератора при изменении коэффициента обратной связи. При ослаблении связи наклон линии II растет, и при накотором критическом значении , обращающем неравенство (9.13) в равенство возникновение колебаний невозможно. Линия связи, соответствующая критической обратной связи, занимает положение ОВ.

Если в автогенераторе с индуктивной обратной связью и колебательной характеристикой, показанной на рис. 9.6, плавно увеличивать М, то начиная с критического значения амплитуда стационарного колебания будет плавно возрастать, как показано на рис. 9.8. Такой режим самовозбуждения называется мягким. Из сказанного следует, что для получения мягкого режима необходимо, чтобы колебательная характеристика выходила из нулевой точки и имела достаточно большой наклон в области малых амплитуд. Все эти требования выполняются при использовании автоматического смещения.

При использовании принудительного (внешнего) смещения колебательная характеристика принимает вид, показанный на рис. 9.9. Для возникновения колебаний в данном случае требуется очень сильная обратная связь (линия , взаимоиндукция ).

Рис. 9,8. Зависимость стационарной амплитуды от обратной связи при мягком режиме

Рис. 9.9. Колебательная характеристика, соответствующая жесткому режиму

Рис. 9.10. Зависимость стационарной амплитуды от обратной связи при жестком режиме

Рис. 9.11. К вопросу об устойчивости генерации при жестком режиме

После того как колебания установились, связь можно ослабить до значения при котором линия связи занимает положение ОВ. При дальнейшем ослаблении связи колебания срываются. Для восстановления колебаний М нужно увеличить до значения соответствующего линии связи ОА. Такой режим самовозбуждения называется

Зависимость стационарной амплитуды от М при жестком режиме показана на рис. 9.10, причем стрелками обозначено направление изменения М.

Если принудительное напряжение смещения настолько велико, что колебательная характеристика начинается не с нуля (рис. 9.11), то никакое увеличение обратной связи не способно вызвать автоколебания. Если же вызвать колебания с помощью внешнего воздействия, то при достаточно сильной обратной связи колебания могут существовать и после прекращения воздействия. Из двух точек пересечения линий I и II точка С является устойчивой, а точка D - неустойчивой (имеется в виду динамическая устойчивость, т. е. устойчивость генерации). Это означает, что при небольших случайных отклонениях амплитуды тока в контуре около точки С система возвращается в исходное состояние, сколь же угодно малое отклонение амплитуды в районе точки D прогрессивно возрастает и переводит амплитуду либо в устойчивую точку С, либо в точку 0 (соответствующую статической устойчивости). Доказательство неустойчивости точки D аналогично доказательству устойчивости точки С, приведенному в предыдущем параграфе.

Учебные вопросы:

1Амплитудные характеристики режимов самовозбуждения

4 Прерывистая генерация

1 Амплитудные характеристики режимов самовозбуждения

Для того чтобы более детально проследить процесс возникновения, нарастания и установления колебаний в автогенераторе, удобно воспользоваться графическим методом с помощью колебательной характеристики и линии обратной связи.

Колебательной характеристикой называется зависимость амплитуды первой гармоники коллекторного тока от амплитуды управляющего напряжения на базе транзистора Iк1 = ф(UБЭ). Вид колебательной характеристики зависит от положения рабочей точки на проходной характеристике транзистора Iк=f(eбэ).

При работе транзистора в режиме колебаний первого рода, т. е. когда рабочая точка А выбрана на середине линейного участка проходной характеристики, как показано на рис. 2.10,а, колебательная характеристика имеет выпуклую форму (рис. 2.10,6,1). При увеличении амплитуды входного напряжения амплитуда выходного тока сначала достаточно быстро возрастает вследствие постоянства крутизны Sд= const). Затем рост выходного тока замедляется из-за нелинейности нижнего и верхнего изгиба характеристики транзистора.

Если рабочая точка на переходной характеристике транзистора выбрана в области отсечки выходного тока В (режим колебаний второго рода), то колебательная характеристика начинается несколько правее нуля. Затем по мере увеличения входного (управляющего) напряжения колебательная характеристика имеет нижний изгиб, соответствующий нелинейному нижнему участку проходной характеристики и соответственно верхний изгиб (рис. 2.10,6,11).

Линией обратной связи называется графически выраженная зависимость напряжения обратной связи от тока в выходной цепи транзистора. Поскольку цепь обратной связи линейна, то линия обратной связи представляет собой прямую линию, восходящую из начала координат (рис. 2.10,в).

Чтобы проследить процесс возникновения, нарастания и установления колебаний, совместим колебательную характеристику и линию обратной связи на одном графике.



2 Мягкий режим самовозбуждения.

Мягкий режим самовозбуждения . На рис. 2.11,а амплитудная колебательная характеристика генераторов в режиме колебаний первого рода (кривая линия) и амплитудная характеристика обратной связи автогенератора (прямая линия) совмещены на одном графике. Поскольку исходная рабочая точка находится на среднем крутом участке проходной характеристики транзистора (см. рис. 2.10,а), то даже самые малые изменения напряжения на входе транзистора вызовут изменения выходного тока. А такие малые изменения напряжения в схеме имеются всегда либо за счет флуктуации носителей зарядов, либо за счет включения напряжения источника питания.

Допустим, что в контуре за счет флуктуации появился ток Ib1m (рис. 2.1 \,а). Этот ток по цепи обратной связи создает на входе напряжение возбуждения U1. Это напряжение в соответствии с колебательной характеристикой вызывает в выходной цепи ток I2. При токе I2 ,на входную цепь автогенератора в соответствии с линией обратной связи наводится напряжение U2, которое вызывает ток I3, и т. д. Последовательность нарастания колебаний показана на рис. 2.11 ,а стрелками. Так, колебания в контуре будут нарастать до значения, определяемого точкой В пересечения колебательной характеристики и линии обратной связи. Точка В соответствует режиму установившихся колебаний: в выходной цепи протекает ток Iуст, на участке база - эмиттер создается напряжение U уст. В точке В выполняется баланс амплитуд, и в автогенераторе устанавливаются устойчивые колебания.

Действительно, если на (выходе автогенератора ток уменьшился до значения I3, то он через цепь обратной связи будет создавать на входе напряжение U3 и колебания снова возрастут до установившегося значения. Если же за счет внешнего воздействия ток в контуре увеличится, например, до значения Iv, то потери в контуре оказываются больше и напряжение на вход по цепи обратной связи наведено меньше. Колебания уменьшаются до установившегося значения.

Из рассмотренного следует, что на участке, где колебательная характеристика проходит над линией связи, пополнения больше потерь и колебания нарастают. На участке, где колебательная характеристика ниже линии обратной связи, пополнения меньше потерь и колебания уменьшаются. В точке В пересечения амплитудных характеристик пополнения равны потерям.

Таким образом, в режиме колебаний первого рода колебания в автогенераторе возникают после включения источника питания самостоятельно и нарастают до установившегося значения плавно, мягко. Поэтому такой режим колебаний называют мягким режимом самовозбуждения.

3 Жесткий режим самовозбуждения.

Жесткий режим самовозбуждения. Если рабочая точка на проходной характеристике транзистора выбрана в области отсечки выходного тока, колебательная характеристика пересекается с линией обратной связи в двух точках, как показано на рис. 2.11,б.

В области 1 кривая проходит под прямой - это значит, как было показано выше, что потери в контуре превышают пополнения энергии и колебания не возникают. В области 2 кривая проходит над прямой - это значит, что потери в контуре меньше, чем пополнения, и колебания могут нарастать. Из этого видно, что в режиме колебаний второго рода колебания автоматически, от флуктуации, возникнуть не могут (участок 0-1 на рис. 2.11,б). Для возникновения колебаний в автогенераторе в режиме колебаний второго рода необходимо во входную цепь транзистора подать напряжение значительной амплитуды UB03б>Uн Только после этого резкого, жесткого внешнего скачка напряжения колебания возникают и быстро нарастают. Отсюда и режим самовозбуждения называется жестким. Колебания нарастают до установившегося значения, соответствующего точке В устойчивых колебаний.