Какие защитные устройства лучше: плавкие предохранители или автоматические выключатели? Предохранители. Выбор, маркировка и расчет предохранителей электрического оборудования. Виды предохранителей Из чего делают плавкий предохранитель

Компонент одноразового применения защищает источник тока от излишней нагрузки, и является наиболее слабым звеном электрической цепи. Плавкие предохранители входят в состав практически всех электросетей. Это устройство состоит из отрезка проволоки, сечение которого рассчитано на прохождение тока определенной величины. При возникновении чрезмерной нагрузки в цепи, плавкий элемент расплавляется и разрывает цепь.

Основными свойствами предохранителя являются: номинальное напряжение, номинальный ток, предельно допустимый ток.

Некоторые люди считают, что качество предохранителя зависит от толщины проволоки в нем. Но это не совсем так. Неквалифицированный расчет толщины плавкой вставки легко становится причиной пожара, так как кроме самого предохранителя нагреваются и провода, составляющие цепь. Если поставить предохранитель со слишком тонкой проволокой, то он не обеспечит нормального функционирования и быстро разорвет цепь.

Принцип действия

Плавкие предохранители включают в промежуток электрической цепи таким образом, что по ним проходит общий ток нагрузки этой цепи. До превышения верхней границы тока проволочный элемент теплый, либо холодный. Но, при появлении в цепи значительной нагрузки или возникновения короткого замыкания величина тока значительно повышается, расплавляет плавкий проволочный элемент, что приводит к автоматическому разрыву цепи.

Плавкие предохранители действуют в 2-х режимах, отличающихся между собой:
  • Нормальный режим , когда устройство нагревается в установившемся процессе, в котором он весь нагревается до рабочей температуры и выделяет тепло наружу. На каждом предохранителе указана наибольшая величина тока, при которой происходит расплавление проволочного элемента. В корпусе вставки могут находиться плавкие элементы, рассчитанные на разную силу тока.
  • Режим перегрузки и короткого замыкания . Устройство выполнено таким образом, что при повышении силы тока до верхней допустимой границы, плавкий элемент очень быстро сгорает. Для достижения такого свойства плавкий элемент в некоторых местах выполняют с меньшим сечением. На них выделяется больше тепла, чем в других местах. Во время замыкания оплавляются и размыкают цепь все узкие участки плавкого элемента. В это время вокруг места оплавления образуется электрическая дуга, которая гаснет в корпусе предохранителя.
Маркировка

Обозначение предохранителей представляют две буквы. Рассмотрим подробнее маркировку плавких предохранителей.

Первая из букв определяет интервал защиты:
  • a — частичный интервал (защита от короткого замыкания (КЗ)).
  • g — полный интервал (защита от КЗ и перегрузки).
Вторая буква определяет вид защищаемого устройства:
  • G — универсальный тип для защиты разного оборудования.
  • L — защита проводов и распредустройств.
  • B — защита оборудования горного производства.
  • F — защита цепей с малым током.
  • M — защита отключающих устройств и электромоторов.
  • R — защита полупроводниковых приборов.
  • S — быстрое срабатывание при КЗ и среднее срабатывание при перегрузке.
  • Tr — защита трансформаторов.

виды и устройство

Слаботочные вставки

Эти предохранители служат для защиты электрических устройств небольшой мощности с потреблением тока до 6 А.

Первая цифра – наружный диаметр, 2-я – длина предохранителя.

  • 3 х 15.
  • 4 х 15.
  • 5 x 20.
  • 6 x 32.
  • 7 х 15.
  • 10 х 30.
Вилочные предохранители

Служат для использования в автомобилях, и защищают их цепи от перегрузок. Вилочные вставки изготавливаются на напряжение до 32 В. Внешний вид их конструкции сдвинут в сторону, так как контакты находятся с одной стороны, а плавкая часть с другой.

  • Миниатюрные вставки.
  • Обычные.
Пробковые вставки

Применяются в жилых домах, работают при токе до 63 А.

  • DIAZED.
  • NEOZED.

Такие плавкие предохранители используют для приборов освещения, защиты бытовых устройств, счетчиков, маломощных электродвигателей. Они отличаются от трубчатых вставок методом крепления.

Трубчатые вставки

Такие вставки изготавливают в закрытом виде с корпусами из материала – фибры, которая образует газ, создающий большое давление, разрывающее цепь.Контакты.

  1. Колпачки.
  2. Кольца.
  3. Фибра.
  4. Вставка плавкая.
Ножевые предохранители
Рабочий ток достигает 1,25 кА. Типоразмеры ножевых видов:
  • 000 – до 100 А.
  • 00 – до 160 А.
  • 0 – до 250 А.
  • 1 – до 355 А.
  • 2 – до 500 А.
  • 3 – до 800 А.
  • 4 – до 1250 А.
Кварцевые

Этот вид вставок является токоограничивающим, не образующим газов, служит для внутреннего монтажа. Предохранители кварцевого вида выполняются на напряжение до 36 киловольт.

1 – Патрон (керамика, стекло).
2 – Вставка плавкая.
3 – Колпачки (металл).
4 — Наполнитель.
5 – Указатель.

Патрон закрывается с помощью колпачков, обеспечивая герметичность. К наполнителю предъявляются определенные требования:
  • Прочность (электрическая).
  • Высокая теплопроводность.
  • Не должен образовывать газы.
  • Не должен впитывать влагу.
  • Частицы наполнителя должны быть строго необходимого размера, во избежание их спекания, либо невозможности погасить дугу.

Таким требованиям отвечает песок из кварца. Плавкий элемент выполняется из меди с покрытием серебром. Из-за значительной длины плавкий элемент навивают в виде спирали.

Газогенерирующие

К такому виду относятся разборные предохранители ПР, стреляющие вставки для внешней установки ПСН, выхлопные ПВТ для трансформаторов.

Вставка ПР служит для монтажа внутри помещений в устройствах до 1000 вольт. Она состоит из:
  1. Патрон, сделан из фибры с латунными кольцами по краям. На конце накручены колпачки из латуни.
  2. Колпачки.
  3. Плавкий элемент в виде цинковой пластины.
  4. Контакты.

При сгорании вставки под воздействием электрической дуги образуется значительное количество газа. Его давление возрастает, дуга гаснет в потоке газа. Вставка выполняется V-образной формы, так как во время сгорания узкого места образуется меньшее количество паров металла, препятствующего погашению дуги.

Термопредохранители

Этот вид вставок является одноразовым устройством. Он служит для защиты дорогих элементов оборудования от перегрева выше границы установленной температуры. Внутри корпуса размещены термочувствительные материалы, что обеспечивает установку вставок в цепях с большим током.

Принцип работы заключается в следующем. В нормальном режиме вставка имеет сопротивление, равное нулю. При нагревании корпуса от защищаемого устройства до температуры сработки повреждается термочувствительная перемычка, которая разрывает цепь питания устройства. После сработки нужно произвести замену термопредохранителя и устранить причину поломки.

Такие плавкие предохранители стали популярными в бытовых электрических устройствах: тостерах, кофеварках, утюгах, а также в климатическом оборудовании.

Общие особенности

Плавкие предохранители отличаются по свойствам срабатывания от номинального тока. Плавкие предохранители имеют инертность срабатывания, поэтому у профессионалов они часто применяются для селективной защиты вместе с электрическими автоматами.

Правила регулируют защиту воздушных линий так, чтобы вставка срабатывала за 15 с. Важной величиной служит время разрушения проводника при работе с током, превышающим установленное значение. Чтобы снизить это время, некоторые конструкции предохранителей имеют предварительно натянутую пружину. Она разводит края разрушенного проводника, во избежание возникновения электрической дуги.

Корпуса предохранителей производят из прочных сортов керамики. Для малых токов применяют вставки с корпусами из стекла. Корпус вставки играет роль основной детали. На ней закреплен плавкий элемент, указатель срабатывания, контакты, таблица с данными. Также корпус выступает в качестве камеры погашения электрической дуги.

Недостатки плавких предохранителей
  • Возможность применения один раз.
  • Значительным недостатком плавких вставок является его устройство, позволяющее недобросовестным специалистам производить шунтирование (применять «жучки»). Это может привести к возгоранию проводки.
  • В 3-фазных цепях электромоторов при срабатывании одного предохранителя пропадает одна фаза, что приводит чаще всего к неисправностям двигателя. В этом случае целесообразно применять реле контроля фаз.
  • Имеется возможность незаконной установки предохранителя на повышенный номинал тока.
  • Может произойти перекос фаз в 3-фазных сетях при значительных токах.
Достоинства плавких предохранителей
  • В ассимметричных 3-фазных цепях в аварийных случаях на 1-й фазе, электрический ток исчезнет только на этой фазе, другие фазы будут продолжать питание потребителей. При больших токах такую ситуацию нельзя допускать, так как это приведет к перекосу фаз.
  • Из-за слабой скорости действия плавкие предохранители можно применять для избирательности.
  • Селективность самих вставок при последовательной схеме имеет расчет намного проще, по сравнению с автоматическими предохранителями, так как номинальные токи предохранителей, соединенных последовательно должны иметь отличия между собой в 1,6 раза.
  • Конструкция плавкого предохранителя значительно проще, чем у электрического автомата, поэтому поломка механизма исключена. Это дает полную гарантию отключения цепи во время аварии.
  • После замены предохранителя с плавким элементом, в цепи снова возобновляется защита со свойствами, удовлетворяющими производителю устройств, в отличие от применения автомата, у которого могут подгореть контакты, тем самым изменятся характеристики защиты.

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

Материал плавких вставок

Плавкие вставки изготовляются из меди, цинка, свинца или серебра. Основные технические данные этих материалов под углом зрения их применимости для плавких вставок приведены в табл. 1.

Таблица 1.

В современных наиболее совершенных предохранителях отдают предпочтение медным вставкам с оловянным растворителем. Широко распространены также цинковые вставки. Медные вставки для предохранителей наиболее удобны, просты и дешевы. Улучшение их характеристик достигается наплавлением оловянного шарика в определенном месте, примерно в середине вставки. Такие вставки применяются, например, в упомянутой серии насыпных предохранителей ПН2. Олово плавится при температуре 232° С, значительно меньшей, чем температура плавления меди, и растворяет медь вставки в месте соприкосновения с нею. Появляющаяся при этом дуга уже расплавляет всю вставку и гасится. Цепь тока оказывается отключенной.
Таким образом, наплавление оловянного шарика приводит к следующему.
Во-первых, медные вставки начинают реагировать с выдержкой времени на столь малые перегрузки, на которые они при отсутствии растворителя вовсе не реагировали бы. Например, медная проволока диаметром 0,25 мм с растворителем расплавилась при температуре 280° С за 120 мин.
Во-вторых, при одной и той же достаточно большой температуре (т. е. при одинаковой нагрузке) вставки с растворителем реагируют много быстрее, чем вставки без растворителя. Например, медная проволока диаметром 0,25 мм без растворителя при средней температуре 1000° С расплавилась за 120 мин, а такая же проволока, но с растворителем при средней температуре только 650° С расплавилась всего за 4 мин.
Применение оловянного растворителя позволяет иметь надежные и дешевые медные вставки, работающие при сравнительно низкой эксплуатационной температуре, имеющие относительно малый объем и вес металла (что благоприятствует коммутационной способности предохранителя) и в то же время обладающие большим быстродействием при больших перегрузках и реагирующие с выдержкой времени на относительно малые перегрузки. Отношение Iп ог:Iв у таких вставок относительно невелико (не более 1,45), что облегчает условия выбора проводников, защищаемых такими плавкими вставками от перегрузок.
Цинк часто используется для изготовления плавких вставок. В частности, такие вставки применяются в упомянутой серии предохранителей ПР2. Вставки из цинка более устойчивы против коррозии. Поэтому, несмотря на относительно малую температуру плавления, для них, вообще говоря, можно было бы допустить такую же предельную эксплуатационную температуру, как для (меди 250°С), и конструировать вставки с меньшим сечением. Однако электрическое сопротивление цинка примерно в 3,4 раза больше, чем у меди. Чтобы сохранить ту же температуру, надо уменьшить потери энергии в ней, соответственно увеличив ее сечение. Вставка получается значительно более массивной. Это при прочих равных условиях приводит к понижению коммутационной способности предохранителя. Кроме того, при массивной вставке с температурой 250°С не удалось бы в тех же размерах удержать на допустимом уровне температуру патрона и контактов. Все это заставляет снизить предельную температуру цинковых вставок до 200°С, а следовательно, еще больше увеличивать сечение вставки. В итоге предохранители с цинковыми вставками при тех же размерах обладают значительно меньшей устойчивостью к токам короткого замыкания, чем предохранители с медными вставками и оловянными растворителями.
При большой потребности плавкие вставки на ряде предприятий изготовляют в собственных электроремонтных мастерских. При этом материалы, из которых выполняют элементы плавких вставок, должны быть тщательно калиброваны и не менее 10 % готовых плавких вставок выборочно испытаны на минимальный и максимальный токи.
За минимальный принимают ток, при котором плавкая вставка не должна перегореть за время менее 1 ч. Обычно этот ток равен 1,3-1,5 ее номинального тока, т. е.Imin=(l,3-1.5)Iном.
За максимальный принимают ток, при котором плавкая вставка должна перегореть за время менее 1 ч, обычно он составляет (l,6-2,l)Iном.
Изготовляемые вставки предохранителей по своим качествам, характеристикам и номинальным токам должны отвечать требованиям соответствующих ГОСТов.
Вставки кустарного изготовления применять недопустимо, так как в лучшем случае они защищают установку только от токов к. з. Для крепления цинковой плавкой вставки должны быть обязательно использованы стальная шайба увеличенного диаметра и пружинящая шайба. При отсутствии этих шайб цинк постепенно выдавливается из-под контактного болта и ослабляет контакт. В патроне предохранителя ПР нельзя устанавливать медную вставку без оловянного растворителя, поскольку при высокой температуре плавления медной вставки фибровый патрон быстро разрушается.

Перегоревшие плавкие вставки следует заменять запасными заводской калибровки. Если таких нет, их можно временно заменить заранее подготовленными проволочками, расчитанными на определенный ток. Диаметры и материалы проволочек приведены в табл 2.

Таблица 2.

Любая электрическая цепь состоит из отдельных элементов. Для каждого из них характерны определённые значения силы тока, при которых данный элемент работоспособен. Увеличение силы тока сверх этих значений может вызвать повреждение элемента. Это происходит из-за недопустимо высокой температуры или по причине довольно-таки быстрого изменения структуры этого элемента от воздействия тока. В таких ситуациях предохранители различных конструкций позволяют избежать порчи элементов электрических цепей.

Их классификация основана на способе разрыва электрической цепи этими предохранителями, и поэтому можно перечислить те из них, которые наиболее широко применяются следующие виды предохранителей:

  • плавкие,
  • электромеханические,
  • электронные,
  • самовосстанавливающиеся.

Способ разрыва электрической цепи охватывает всю совокупность процессов, которые происходят в предохранителе при его срабатывании.

  • Плавкие предохранители разрывают электрическую цепь в результате расплавления плавкой вставки.
  • Электромеханические предохранители содержат контакты, которые отключаются деформирующимся биметаллическим элементом.
  • Электронные предохранители содержат электронный ключ, который управляется специальной электронной схемой.
  • Самовосстанавливающиеся предохранители изготовлены с применением особых материалов. Их свойства изменяются при протекании тока, но восстанавливаются после уменьшения или исчезновения тока в электрической цепи. Соответственно сопротивление сначала увеличивается, а затем вновь уменьшается.

Плавкие

Самыми дешёвыми и наиболее надёжными являются плавкие предохранители. Плавкая вставка, которая после увеличения силы тока сверх установленной величины плавится, или даже испаряется, гарантированно создаёт разрыв в электрической цепи. Эффективность такого способа защиты определяется главным образом скоростью процесса разрушения плавкой вставки. Для этого она изготавливается из специальных металлов и сплавов. Главным образом это такие металлы как цинк, медь, железо и свинец. Поскольку плавкая вставка по сути своей токопроводящая жила она ведёт себя как проводник, для которого характерны графики, показанные далее.

Поэтому для правильной работы плавкого предохранителя тепло, которое выделяется в плавкой вставке при номинальном токе нагрузки не должно приводить к её перегреву и разрушению. Оно рассеивается в окружающую среду через элементы корпуса предохранителя, нагревая вставку, но без разрушительных последствий для неё.

Но если ток увеличится, баланс тепла нарушится, и температура вставки начнёт возрастать.

При этом произойдёт лавинообразное нарастание температуры из-за увеличения активного сопротивления плавкой вставки. В зависимости от скорости нарастания температуры вставка либо расплавляется, либо испарятся. Испарению способствует вольтова дуга, которая может возникать в предохранителе при значительных величинах напряжения и тока. Дуга на какое-то время заменяет собой разрушенную плавкую вставку, поддерживая ток в электрической цепи. Поэтому её существование также определяет временные характеристики отключения плавкой вставкой.

  • Времятоковая характеристика — главный параметр плавкой вставки, по которому делается выбор её для той или иной электрической цепи.

В аварийном режиме важно наиболее быстро разорвать электрическую цепь. С этой целью для плавких вставок применяются специальные методы, такие как:

  • местное уменьшение её поперечника;
  • «металлургический эффект».

В принципе это похожие методы, которые позволяют, так или иначе, вызвать местный более быстрый нагрев вставки. Переменное сечение при меньшем поперечнике нагревается быстрее, чем при большем сечении. Чтобы дополнительно ускорить разрушение плавкой вставки она делается составной из пачки одинаковых проводников. Как только один из этих проводников перегорит, суммарное сечение уменьшится и перегорит следующий проводник и так далее до полного разрушения всей пачки из проводников.

Металлургический эффект применяется в тонких вставках. Он основан на получении местного расплава с более высоким сопротивлением и растворении в нём основного материала вставки с малым сопротивлением. В результате местное сопротивление увеличивается, и вставка более быстро расплавляется. Расплав получается из капель олова или свинца, которые наносятся на медную жилку. Такие методы применяются для маломощных предохранителей на токи до нескольких единиц ампер. В основном они применяются для различных бытовых электроприборов и устройств.

Форма, размеры и материал корпуса может изменяться в зависимости от модели плавкого предохранителя. Стеклянный корпус удобен тем, что позволяет увидеть, в каком состоянии пребывает плавкая вставка. Но зато керамический корпус дешевле и прочнее. Под определённые задачи адаптированы другие конструктивные исполнения. Некоторые из них показаны на изображении далее.

На основе трубчатых керамических корпусов устроены обычные электрические пробки. Собственно пробка – это корпус, который специально сделан под патрон для удобного использования предохранителя. Некоторые конструкции пробок и керамических предохранителей снабжены механическим индикатором состояния плавкой вставки. При перегорании её срабатывает устройство типа семафора.

При увеличении силы тока сверх 5 – 10 А появляется необходимость гашения вольтовой дуги внутри корпуса плавкого предохранителя. Для этого внутреннее пространство вокруг плавкой вставки заполняется кварцевым песком. Дуга быстро нагревает песок до выделения газов, которые препятствуют дальнейшему развитию вольтовой дуги.

Несмотря на определённые неудобства, обусловленные необходимостью запаса предохранителей для замены, а также замедленным и недостаточно точным для некоторых электрических цепей срабатыванием, этот тип предохранителей самый надёжный из всех. Надёжность срабатывания тем больше, чем выше скорость нарастания тока через него.

Электромеханические

Предохранители электромеханической конструкции принципиально отличаются от плавких предохранителей. В них есть механические контакты и механические элементы для управления ими. Поскольку надёжность любого устройства уменьшается по мере его усложнения, для этих предохранителей хотя бы теоретически, но существует вероятность такой неисправности, при которой установленный ток срабатывания не будет отключён. Многократность срабатывания – существенное преимущество этих устройств перед плавкими предохранителями. Недостатками можно обозначить такие свойства как:

  • появление дуги при выключении и постепенное разрушение контактов из-за её воздействия. Не исключена сварка контактов между собой.
  • Механический привод контактов, который дорого полностью автоматизировать. По этой причине повторное включение приходиться делать вручную;
  • недостаточно быстрое срабатывание, которое не может обеспечить сохранность некоторых «скоропортящихся» потребителей электроэнергии.

Электромеханический предохранитель часто именуется как «автомат» и присоединяется к электрической цепи либо цоколем, либо клеммами для проводов, зачищенных от изоляции.

Электронные

В этих устройствах механика полностью заменена электроникой. У них только один недостаток с его несколькими проявлениями:

  • физические свойства полупроводников.

Этот недостаток проявляется:

  • в необратимых внутренних повреждениях электронного ключа от нештатных физических воздействий (превышение напряжения, тока, температуры, радиации);
  • ложное срабатывание или поломка схемы управления электронным ключом от нештатных физических воздействий (превышение температуры, радиации, электромагнитного излучения).

Самовосстанавливающиеся

Из специального полимерного материала сделан брусок и снабжён электродами для присоединения к электрической цепи. Такова конструкция этой разновидности предохранителей. Сопротивление материала в заданном температурном диапазоне мало, но резко увеличивается, начиная с определённой температуры. По мере остывания сопротивление снова уменьшается. Недостатки:

  • зависимость сопротивления от температуры окружающей среды;
  • длительное восстановление после срабатывания;
  • пробой превышенным напряжением и выход из строя по этой причине.

Правильный выбор предохранителя обеспечивает существенную экономию средств. Дорогостоящее оборудование, своевременно отключенное предохранителем при аварии в электрической цепи, сохраняет свою работоспособность.

Предохранители используются везде и всюду - они есть в технике, в самых разных электрических устройствах, автомобилях, промышленном оборудовании. Существует множество видов этих элементов. Для чего они нужны и в чем их особенности? Рассмотрим основные виды предохранителей.

Характеристика

Предохранитель - это общий термин, который достаточно устойчиво используется в области электрики. Эта деталь предполагает защиту для проводов, оборудования и электрических сетей.

Предохранитель представляет собой коммутационное изделие. В чем его назначение? Предохранитель призван защитить электрическую сеть от высоких токов и коротких замыканий. Принцип действия детали очень простой - в случае образования сверхтоков разрушается специально предназначенный для этого элемент. Зачастую это плавкая вставка. Так устроены все виды стеклянных предохранителей.

Эти вставки - обязательный элемент, без которого невозможен ни один вид предохранительных элементов. Внутри нее также имеется и специальное дугогасительное устройство. Вставки в предохранителях изготавливаются из фарфоровых или фибровых корпусов и закрепляются в специальные части, что проводят электрический ток. Элементы, предназначенные под малые токи, могут и вовсе не иметь корпуса.

Плавкий

Это наиболее распространенные виды предохранителей для использования в быту. Наверное, это единственный элемент, который проще всего диагностировать на предмет исправности. Для этого нужно просто посмотреть деталь на просвет - будет видно, цела плавка вставки или нет.

Изготавливают данные детали в стеклянном корпусе.

Плавкий трубчатый керамический

Этот элемент практически ничем не отличается от стеклянного изделия. Единственное различие в материале, из которого изготовлен корпус. Но в эксплуатации эти детали не так комфортны - диагностировать «на свет» уже не выйдет. Для проверки необходимо использовать тестеры или мультиметры.

Плавкая вставка ПВД

Быстродействующие предохранители

Эти изделия ничем особенным от остальных не отличаются. Различие только в том, что при возникновении короткого замыкания плавкая часть сгорает очень быстро.

SMD

Данные изделия можно встретить в электронных устройствах. Они очень миниатюрны. Принцип действия и назначения предохранителей - защитить технику от высоких токов, с чем они отлично справляются.

Самовосстанавливающиеся

Это достаточно интересные решения. Самовосстанавливающийся предохранитель представляет собой деталь, внутри которой находится специальный пластик. Пока пластиковая вставка холодная, она может проводить электричество. Как только вставка разогреется до определенной температуры, ее токопроводящие свойства теряются за счет увеличения сопротивления.

После остывания ток снова сможет проходить через изделие. Плюс данных деталей в том, что после перегорания нет никакой нужды в замене элемента. Промышленность выпускает эти изделия в различных видах. Они подходят для пайки по технологии навесного или поверхностного монтажа. В основном эти виды предохранителей используют в маломощных схемах.

Взрывные

Если все вышеперечисленные изделия знает каждый, то взрывной предохранитель - это редкая группа. Процесс перегорания детали обеспечивается достаточно эффектным звуком. Специальное которое закрепляется на токопроводящей детали, взрывается. За это отвечают специальные датчики. Последние следят за током в электрической цепи. Это очень точные предохранители, так как они практически не зависят от характеристик металла на токопроводящей детали. Данный элемент зависит от точности датчика тока.

Другие типы предохранителей

Для работы в цепях используют специальные автогазовые, газовые изделия, а также элементы жидкостного типа. Существуют даже стреляющие предохранители. В обыденной жизни их увидеть нельзя - это профессиональное мощное оборудование.

Маркировка и обозначения

Каждый производитель изготавливает предохранители под определенным кодом или артикулом. Номер предохранителя позволяет в каталогах найти и уточнить технические характеристики. Зачастую эти коды можно найти на корпусах изделий. Также код может наноситься на металлическую часть. Кроме кодов, на корпусе также могут указываться основные данные - это номинальный ток в А, номинальные напряжения в В, отключающие характеристики либо особенности конструкции. По этим данным можно определить назначение предохранителей.

Итак, величина номинального тока - это максимально допустимое значение, при котором деталь может нормально функционировать в течение длительного срока.

Номинальные напряжения - это максимально допустимое напряжение, при котором деталь безопасно разрывает цепь в случае короткого замыкания или при перегрузке в сети.

Отключающей способностью называют максимальные токи. При них предохранитель сработает, но корпус его не будет разрушен.

Характеристиками называют зависимость времени, при котором рушится плавкий элемент от тока, что протекает через деталь. Разные виды предохранителей по характеристикам объединены в группы по особенностям применения и скорости срабатывания.

Обычно эти характеристики указывают на силовых деталях. Для обозначения используются буквы латинского алфавита. Первой обозначается отключающая способность. Так, G - это полный диапазон, деталь способна защитить цепь и от перегрузки, и от короткого замыкания. А - диапазон частичный, а такие виды предохранителей защищают только от коротких замыканий.

Второй буквой обозначаются типы цепи:

  • G - цепь общего назначения.
  • L - защита кабелей, а также распределительных систем.
  • M - защита цепей в электродвигателях.
  • Tr - предохранитель, способный защитить трансформаторную сеть.

Элементы с буквой R используются вместе с силовым полупроводниковым оборудованием. А PV сможет обеспечивать защиту солнечных батарей.

Итак, мы рассмотрели, какие бывают виды предохранителей и какую они имеют маркировку.

Плавкий предохранитель – это установочное изделие, предназначенное для защиты электроприборов путем отключения подачи на них электроэнергии при превышении допустимой величины тока способом расплавления установленной в предохранителе калиброванной проволоки.

Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители. Они выпускаются разных конструкций, типоразмеров и на любые токи защиты.

Рассмотренная технология ремонта предохранителей при соблюдении всех условий обеспечит его защитную функцию. Но не каждый имеет опыт работы с паяльником и измерения диаметра проволоки. Да и в любом случае предохранитель промышленного изготовления будет работать надежнее.

Квартирную электропроводку раньше тоже защищали исключительно с помощью плавких предохранителей, установленных в пробки. В настоящее время для защиты электропроводки применяются более надежные многоразовые приборы защиты от коротких замыканий – автоматические выключатели . В электроприборах же, более лучшей защиты от коротких замыканий, чем плавкий предохранитель пока ничего не придумали. Особенно актуально применение плавких предохранителей в автомобилях, так как они являются единственным надежным и дешевым средством защиты от короткого замыкания.

Условное графическое обозначение
плавкого предохранителя

Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь. Рядом с условным обозначением обычно пишется и буквенное обозначение Пр. или F. Иногда на схемах просто пишут thermal fuse или fuse. После буквы часто указывают ток защиты предохранителя, например F 1 А, обозначает, что в схеме установлен предохранитель на ток защиты 1 ампер.

При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и использовать повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая калиброванная проволока, размещенная внутри корпуса. Если перегоревшую проволоку заменить на такую же, то предохранитель сможет служить дальше.

Принцип работы предохранителя на видеоролике

При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается.

Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.

Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.

Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.

Многие думают, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится.

При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранителя любой попавшейся проволокой, а еще хуже, просто вставляют вместо предохранителя гвоздь или кусок толстой проволоки. Такое решение может окончательно все испортить и способствует возникновению пожара.

Типы плавких предохранителей

По назначению и конструкции плавкие предохранители бывают следующих типов:

  • Вилочные (в основном применяются для защиты электропроводки и приборов в автомобилях);
  • С слаботочными вставками для защиты электроприборов с током потребления до 6 ампер;
  • Пробковые (устанавливаются в щитках жилых домов, рассчитаны на ток защиты до 63 ампер);
  • Ножевые (применяются в промышленности для защиты сетей при токе потребления до 1250 ампер);
  • Газогенерирующие;
  • Кварцевые.

Рассмотренная в статье технология ремонта предназначена для восстановления вилочных, со слаботочными вставками, пробковых и ножевого типа предохранителей.

Трубчатые плавкие предохранители

Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволокой калиброванной по диаметру, проходящей внутри трубочки. Внешний вид трубчатых плавких предохранителей Вы видите на фотографии.


К колпачкам проволока приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.

Автомобильные плавкие предохранители

Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование. Чаще всего при перегорании лампочек у фар . Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается.

Бывает, плавкий предохранитель в автомобиле сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке. На фотографии Вы видите широко применяемые автомобильные плавкие предохранители ножевого (вилочного) типа. Под каждым предохранителем приведен ток его защиты в амперах.

Перегоревший предохранитель в авто положено заменять предохранителем такого же номинала, но можно его и отремонтировать, заменив перегоревший в предохранителе провод медным соответствующего диаметра. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего авто предохранителя, то можно воспользоваться цветовой маркировкой.

Цветовая маркировка автомобильных предохранителей

Формула для расчета диаметра проволоки предохранителя
по мощности электроприбора

Мощность часто указывают на этикетках, приклеенных на изделиях. Если на изделии указана потребляемая мощность, то можно рассчитать номинальный ток предохранителя по ниже приведенной формуле.

где I nom – номинальный ток защиты предохранителя, А; P max – максимальная мощность нагрузки, Вт; U – напряжение питающей сети, В.

Но гораздо удобнее воспользоваться готовыми данными из таблиц. Обратите внимание, первая таблица служит для выбора номинала предохранителя изделий, питающихся от бытовой электросети 220 В, а вторая, для изделий, используемых в автомобилях с напряжением бортовой сети 12 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 220 В

Рассмотрим на примере как выбирать предохранитель.
Телевизор перестал работать после грозы. Определено, что сгорел предохранитель. Номинал его не известен. На этикетке задней крышки написано, что потребляемая мощность составляет 120 Вт, бывает, что пишут и 120 ВА. Это обозначение одной и той же мощности, но по стандартам разных стран. По таблице получается, что для электроприборов с максимальной потребляемой мощностью 120 Вт (ближайшее значение 150 Вт) является предохранитель на 1 А.

Методика подбора предохранителя для защиты бортовой электропроводки автомобиля ничем не отличается от выбора для бытовой электропроводки 220 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 12 В (бортовая сеть автомобиля)

Если после двух замен предохранители каждый раз перегорали, значит, поврежден электроприбор и требуется уже его ремонт. Попытка установить предохранитель на больший ток может только нанести еще дополнительный вред изделию вплоть до не ремонтопригодности.

Калькулятор для расчета тока предохранителя

Если в таблицах нет данных для Вашего случая, например, напряжение питания изделия составляет 24 В или 110 В, то можете самостоятельно с помощью приведенного ниже онлайн калькулятора выполнить расчет.

При расчете на калькуляторе Вы получите точное значение тока. Для надежной работы предохранителя необходимо, чтобы его номинал был не менее чем на 5% больше. Например, если получено расчетное значение тока 1 А, то нужно брать предохранитель большего ближайшего номинала из стандартного ряда, то есть 2 А.

Иногда попытки определить номинал предохранителя считыванием информации не получается. На электроприборе надписей нет, на предохранителе не читаемая маркировка. При наличии амперметра, и опыта работы с ним, то вынув предохранитель и подключив амперметр к контактам колодки, в котором был установлен предохранитель, можно измерять ток и тем самым определить его номинал.

Но тут есть подводный камень. Если предохранитель вышел из строя из-за неисправности электроприбора, то ток может быть на много больше, чем должен быть, в дополнение можно еще и вывести из строя измерительный прибор.

Расчет диаметра проволоки плавкого предохранителя

Для ремонта предохранителя необходимо заменить перегоревшую проволоку. При производстве предохранителей на заводах используют, в зависимости от величины тока и быстродействия, калиброванные серебряные, медные, алюминиевые, никелиновые, оловянные, свинцовые и проволоки из других металлов.

Для изготовления предохранителя в домашних условиях доступна только красная медь калиброванного диаметра. Все электропровода сделаны из меди, и чем эластичней провод, тем тоньше в нем проводники и большее их количество. Поэтому вся ниже предложенная технология ориентирована на применение медной проволоки.

При выборе предохранителя для аппаратуры разработчики пользуются простым законом. Ток предохранителя должен быть больше максимально потребляемым изделием. Например, если максимальный ток потребления усилителя составляет 5 ампер, то предохранитель выбирается на 10 ампер. Первое, что необходимо найти на корпусе предохранителя его маркировку, из которой можно узнать, на какой ток он рассчитан. Часто величину тока пишут на корпусе изделия, рядом с местом установки предохранителя. Затем из ниже приведенной таблицы определить какого диаметра нужен провод.

Таблицы для выбора диаметра проволоки
в зависимости от тока защиты предохранителя

Для ремонта предохранителей на ток защиты от 0.25 до 50 ампер

0,25 0.5 1.0 2.0 3.0 5.0 7.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Диаметр проволоки, мм Медной 0.02 0.03 0.05 0.09 0.11 0.16 0.20 0.25 0.33 0.40 0.46 0.52 0.58 0.63 0.68 0.73
Алюминиевой - - 0.07 0.10 0.14 0.19 0.25 0.30 0.40 0.48 0.56 0.64 0.70 0.77 0.83 0.89
Стальной - - 0.32 0.20 0.25 0.35 0.45 0.55 0.72 0.87 1.00 1.15 1.26 1.38 1.50 1.60
Оловянной - - 0.18 0.28 0.38 0.53 0.66 0.85 1.02 1.33 1.56 1.77 1.95 2.14 2.30 2.45

Для ремонта предохранителей на ток защиты от 60 до 300 Ампер

Ток защиты предохранителя, Ампер 60 70 80 90 100 120 160 180 200 225 250 275 300
Диаметр проволоки, мм Медной 0.83 0.91 1.00 1.08 1.16 1.31 1.59 1.72 1.84 1.99 2.14 2.28 2.41
Алюминиевой 1.00 1.10 1.22 1.32 1.42 1.60 1.94 2.10 2.25 2.45 2.60 2.80 2.95
Стальной 1.80 2.00 2.20 2.38 2.55 2.85 3.20 3.70 4.05 4.40 4.70 5.0 5.30
Оловянной 2.80 3.10 3.40 3.65 3.90 4.45 4.90 5.80 6.20 6.75 7.25 7.70 8.20

Формула для расчета диаметра медной проволоки
для предохранителя

Для определения более точных значений диаметра медной проволоки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.

где I пр – ток защиты предохранителя, А; d – диаметр медной проволоки, мм.

Как измерять диаметра проволоки

Диаметр тонкого провода лучше всего измерять микрометром . Если под рукой нет микрометра для измерения диаметра проволоки, то можно воспользоваться обыкновенной линейкой.

Нужно намотать 10-20 витков к витку проволоки на линейку, поделить количество закрытых миллиметров на количество намотанных витков. Получите диаметр. Например, у меня намотано 10 витков провода, и они закрыли 6,5 мм. Делим 6,5 на 10. Диаметр провода получается равным 0,65 мм. 0,05 мм занимает изоляция. Следовательно, реальный диаметр составляет 0,6 мм.

Такой провод подойдет для изготовления предохранителя на 30 А. Провод мотал толстый для большей наглядности. Чем больше намотаете витков на линейку, тем точнее будет результат измерений. Нужно наматывать не менее одного сантиметра. Если в наличии проволока малой длины, то намотайте ее на любой стержень, например, отвертку, зубочистку или карандаш, а линейкой измерьте ширину намотки.

Результаты измерений можете обработать с помощью онлайн калькулятора. Для определения диаметра провода достаточно в окошках ввести ширину намотки, количество витков и нажать «Рассчитать диаметр провода».

Ремонт плавкого предохранителя своими руками

Ремонт трубочного плавкого предохранителя

Первый самый простой. Проволока зачищается до блеска и наматывается на каждую чашку по несколько витков, затем предохранитель вставляется в держатель. Этот способ не надежен, и воспользоваться им можно, как временной мерой. Благодаря своей простоте он позволяет оперативно проверить исправность электроприбора. Если при включении проволока расплавилась, значить дело не в предохранителе, и требуется более квалифицированный ремонт.


Второй способ несколько сложней. Но тоже не требует применения пайки. Нужно прогреть по очереди чашки зажигалкой или на газовой плите и удерживая через ткань руками снять их со стеклянной трубки. Нагревать можно и паяльником. Внутри чашки для хорошего контакта нужно тщательно очистить от остатков клея.


Продеть зачищенную от изоляции проволоку через трубку по диагонали, загнуть ее концы вдоль трубки и надеть на место чашки. Плавкий предохранитель отремонтирован.

Третий способ по сути такой же, как и первых два. Но отремонтированный предохранитель практически не отличается от нового. Ремонт выполняется следующим образом.

Заводская калиброванная проволока при изготовлении предохранителя продевается в отверстия в торцах чашек и фиксируется припоем. Для того, чтобы вставить новую проволоку необходимо паяльником разогреть торцы чашек и зубочисткой или заточенной деревянной палочкой освободить отверстия в торцах чашек от припоя. Далее выполнить описанную выше заводскую операцию.


Бывает отверстия в чашках очень маленького диаметра и сложно их очистить от припоя. Тогда при наличии технической возможности проще просверлить отверстия сверлом диаметром 1-2 мм или расширить граненым шилом

Предложенная технология ремонта предохранителей и плавких вставок с успехом может быть применена для восстановления практически любых типов плавких предохранителей.

Ремонт автомобильного предохранителя ножевого типа

Технология ремонта автомобильного предохранителя ничем не отличается от технологии ремонта трубчатого, даже проще, так как нет необходимости заниматься его разборкой.

Сначала нужно наждачной бумагой или надфилем зачистить ножи предохранителя у его основания полоской в несколько миллиметров и залудить эти места припоем .

При залуживании столкнулся с тем, что при использовании спирто-канифольного флюса припой не хотел растекаться по поверхности ножей. Пришлось применить флюс «ФИМ», предназначенный для пайки меди, серебра, константана, платины и черных металлов. Основой флюса является ортофосфорная кислота. Я его всегда использую для пайки, если канифоль не подходит. Остатки флюса ФИМ удаляются промывкой водой.

Предохранитель был рассчитан на ток защиты 10 А, поэтому в соответствии с приведенной выше таблицей для ремонта был взят провод ⌀0,25 мм. Проводу была придана форма петли, как показано на фотографии, и концы его залужены припоем.

После всех подготовительных работ осталось только завести петлю провода внутрь корпуса предохранителя и припаять концы к ножкам.

Растекшийся припой можно срезать ножом, удалить с помощью наждачной бумаги или сточить надфилем.

Автомобильный предохранитель отремонтирован, и теперь его можно повторно использовать для защиты цепей в электропроводке автомобиля. Если после установки отремонтированного предохранителя он опять перегорел, то нужно искать неисправность в электрооборудовании автомобиля.

Как сделать индикатор перегорания предохранителя своими руками

В продаже есть автомобильные предохранители с индикатором их неисправности. В корпусе предохранителя вмонтирована миниатюрная лампочка накаливания или светодиод, начинающие светиться при перегорании предохранителя. Такой индикатор перегорания авто предохранителя можно собрать своими руками по ниже предложенной на фотографии электрической схеме.


Для этого достаточно подсоединить параллельно контактам предохранителя, любой светодиод VD1 через токоограничивающий резистор R1 или миниатюрную лампочку, рассчитанную на напряжение 12 В. Индикатор перегорания предохранителя можно смонтировать как в корпусе предохранителя, так и установить на колодке его держателя. Второй вариант предпочтительнее, так как при замене предохранителя индикатор останется на месте. Индикатор не будет светить при перегоревшем предохранителе, если не подключена нагрузка.

Приведенная на фотографии схема индикатора перегорания предохранителя или срабатывании автоматического выключателя с успехом может работать и в бытовой электросети при питающем напряжении 220 В.


Достаточно увеличить номинал резистора R1 до 300-500 кОм и для защиты светодиода VD1 от пробоя обратным напряжение дополнить схему диодом VD2 любого типа, рассчитанного на обратное напряжение не менее 300 В. Подойдет, например, широко применяемый отечественный диод КД109Б или импортный 1N4004.

Для сети переменного тока 220 В можно индикатор перегорания предохранителя или автоматического выключателя сделать на неоновой лампочке.